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Summary

Standard single-cell RNA sequencing (scRNA-seq) pipelines nearly always include unsupervised clustering as a key step in identifying
biologically distinct cell types. A follow-up step in these pipelines is to test for differential expression between the identified clusters.
When algorithms over-cluster, downstream analyses can produce misleading results. In this work, we present “recall” (calibrated clus-
tering with artificial variables), a method for protecting against over-clustering by controlling for the impact of reusing the same data
twice when performing differential expression analysis, commonly known as “double dipping.” Importantly, our approach can be
applied to a wide range of clustering algorithms. Using real and simulated data, we show that recall provides state-of-the-art clustering

performance and can rapidly analyze large-scale scCRNA-seq studies, even on a personal laptop.

Introduction

Recent advances in single-cell RNA sequencing (scRNA-
seq) technologies have enabled the generation of datasets
that contain the transcriptomic profiles of thousands to
millions of individual cells."* Unless an additional assay
is paired with sequencing (e.g., cellular indexing of tran-
scriptomes and epitopes, known as CITE-seq”), cell type la-
bels are not provided with the corresponding transcrip-
tomic profiles. This has led to many scRNA-seq
bioinformatic pipelines requiring both (1) clustering to
identify putative cell types based on shared gene expres-
sion covariation and (2) differential gene expression anal-
ysis between cells in each cluster to identify “marker
genes” uniquely expressed by each putative cell type. The
most commonly used software packages, such as Seurat®
and Scanpy,’ perform these two steps on the same dataset.
This double use of data is often referred to as “circular anal-
ysis” or “double dipping” and is known to result in highly
inflated p values, even in the null case when gene expres-
sion is identically distributed and there are no true group-
ings that distinguish cell populations.®” The miscalibrated
test statistics produced by circular analyses make it chal-
lenging to assess whether the genes found to be differen-
tially expressed between two putative cell groups are
“real” or solely identified due to chance based on the
way cells are partitioned by the clustering algorithm being
used. Importantly, simple solutions, such as sample split-
ting between cells, do not appropriately correct for this
type of post-selective inference.”

Several methods have been recently developed to correct
for post-selective inference after clustering. These methods
include (1) an approximate test based on truncated normal
distributions,® (2) a data splitting strategy that splits data at
the level of individual gene counts,” and (3) using syn-
thetic null variables called knockoffs to calibrate hypothe-
sis testing.” The point of each of these methods is to
identify an appropriate hypothesis testing significance
threshold to account for the statistical inflation that occurs
due to the double use of data. However, none of these tests
inform if (or how) the re-clustering of cells should be done.
They simply return a list of calibrated p values. As a result,
approaches for protecting against over-clustering have
recently been proposed, including “single-cell significance
of hierarchical clustering” (sc-SHC),” “clustering hierarchy
optimization by iterative random forests” (CHOIR),'® and
an “adaptive embedding and clustering method” using
variational autoencoders (scAce).!

In this work, we take inspiration from the use of negative
control knockoff variables for calibrated statistical tests'*"*
and introduce “recall,” a method for performing calibrated
clustering with artificial variables in single-cell datasets.
The ultimate goal of recall is to provide users with the correct
number of clusters. The rationale is that when clusters are
correctly inferred, the effect of double dipping on down-
stream tasks (e.g., differential expression analyses) is mini-
mal. Our approach can be paired with any existing clustering
algorithm that has a hyperparameter for tuning the number
of clusters and makes no strong assumptions about the input
data. We statistically motivate the need for an algorithm like
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Figure 1. Overview of the recall algorithm and examples of results from different clustering approaches on simple simulated data-
sets

(A) Schematic of the clustering workflow with the recall approach.

(B) Demonstration of the traditional clustering framework versus the alternative using recall for simulated data with one known group.
Images left to right show the true labels, clusters found using the Louvain algorithm with default parameter settings in Seurat, and the
clusters found using the same Louvain algorithm paired with recall.

(legend continued on next page)
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recall, evaluate its utility against other recently proposed
clustering correction methods, and demonstrate its ability
to efficiently scale to large-scale scCRNA-seq studies.

Material and methods

Overview of the recall algorithm

Consider a study with scRNA-seq expression data fori = 1,...,N
cells that each have measurements forj = 1,...,G genes. Let this
dataset be represented by an NxG matrix X where the column-
vector X; denotes the expression profile for the j-th gene. The recall
method augments the real expression matrix with artificial null
genes, which are generated to have no association with any partic-
ular cell type.'*!* These negative control variables go through the
same preprocessing, clustering, and differential expression ana-
lyses as the real observed genes in the study; therefore, they are
presented with the same opportunity to be identified as marker
genes. Since the artificial null genes are essentially noise variables,
the distribution of their test statistics represents the impact of
post-selective inference (i.e., deviations from the null). As a result,
we can correct for these same deviations from the null in the
observed test statistics for the real genes, which allows us to also
calibrate our cluster assignments. This process is akin to imple-
menting a “knockoff filter” (which controls the false discovery
rate) when testing for differentially expressed genes between clus-
ters.'”"? If there are no detectable differences between the inferred
clusters, we assume that over-clustering has occurred and re-clus-
ter with a smaller number of groups. More specifically, recall works
by implementing the following steps (Figure 1A).

(1) For each gene in the study x;, generate an artificial null
expression vector X;. Next, concatenate all of the synthetic
genes together and construct a matrix of artificial null vari-
ables X = [Xi,...,%g].

Combine the real gene expression matrix with the artificial
null features into a single object X* = [X;X]. Then,
perform the usual preprocessing on the augmented data
matrix X*. In this paper, preprocessing consists of normal-
izing the expression counts followed by principal-compo-
nent analysis (PCA).

Apply a given clustering algorithm (e.g., the Louvain
algorithm) to the PCA embeddings of the augmented ma-
trix X* (or, alternatively, apply the clustering algorithm
to the augmented matrix directly).

Conduct differential expression analysis between each k-th
and /-th cluster pair, denoted by Cx and C;, respectively.
Obtain p values for all genes (real and artificial nulls) across
each comparison.

Let p;(k; 1) represent the p value for the j-th real gene when
comparing differential expression between clusters ¢y and

@
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C. Similarly, let p;(k;1) represent the p value for the same

comparison but for the corresponding j-th artificial null

gene. We use these two p values to compute the following

test statistic (or contrast score)°'12:
Wilkil) = — logpi(kiD) — [~ logpy(ki)].  (Fquation 1)

Intuitively, a large, positive value of Wj(k; ) represents evidence
that the j-th gene is truly different between clusters Cx and(C;, while
a value less than or equal to zero represents strong evidence that
there is no difference in the expression of the j-th gene between
the groups. To compute the test statistics W;(k; ) for each cluster
in Equation 1, recall uses p values p;(k;I) and [Ji(k; I) from the Wil-
coxon rank-sum test as implemented by the FindMarkers function
in the Seurat software package’ and accelerated by Presto.'*

(6) Next, compute the data-dependent threshold (inspired by
the knockoff+ method proposed by Barber and Candes'?)
via the following formulation:

Lo Wik < — 1) _ }
max{#{j: Wik ) = 1.1} = 1
(Equation 2)

7(k,l) = min{t >0:

where #{ +} denotes the cardinality of a set and ¢ is a hyperpara-
meter (in the knockoff framework, g represents the desired false
discovery rate). By default and for all results presented in this pa-
per, recall setsq = 0.05.Ifnosucht > 0 exists, weset r(k,[) = .

If, for any pair of clusters, 7(k,/) = o, then we return to step 3
and rerun the clustering algorithm with a smaller number of clus-
ters. However, if 7(k,I) < o for all pairs of clusters, then we see no
evidence of over-clustering and return the inferred cluster assign-
ments to the user.

The recall software package allows users to simulate artificial vari-
ables from different classes of null distributions. In the main text, we
primarily focus on using a zero-inflated Poisson distribution to
generate independent synthetic genes (recall+ZIP). Additional
choices that we also consider include generating (1) independent
artificial genes via a negative binomial distribution (recall+NB), (2)
correlated Poisson-distributed artificial genes via a Gaussian copula
(recall+Poisson-copula), (3) correlated NB-distributed artificial genes
via a Gaussian copula (recall+NB-copula), and (4) artificial genes
drawn using the count splitting method (recall+countsplit).” We
describe how each of these null distributions is implemented within
the recall algorithm and software package in the next section.

Construction of artificial null genes

There has been a large body of work focused on choosing the correct
distributions for modeling scRNA-seq count data.'*'® To construct
artificial null genes that “match” the distribution of expression for
the original real genes (but without being associated with any partic-
ular cell types), we use several approaches, which we detail below.

(C) Bar chart showing the number of clusters detected by the Seurat default and recall when there is a single true group. The Seurat default
incorrectly found 4-7 clusters in each simulation, while recall correctly returned a single cluster. The error bars denote the standard deviation.
(D) Demonstration of the traditional clustering framework versus the alternative using recall for simulated data with three known
groups. Images left to right show the true labels, clusters found using the Louvain algorithm with default parameter settings in Seurat,
and the clusters found using the same Louvain algorithm paired with recall.

(E) Bar chart showing the number of clusters detected by the Seurat default and recall when there are three true groups. The Seurat default
incorrectly found 4 clusters in each simulation, while recall correctly returned three clusters. The error bars denote the standard deviation.
(F) Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated datasets using V-measure. Each simulated dataset had five
replicates and consisted of 1, 5, and 10 groups with varying sample sizes of N = 5,000, 10,000, 25,000, and 50,000 cells. The two recall
copula algorithms scaled exponentially with the number of cells and were not able to be completed when N = 50,000 cells.
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Independent ZIP distribution

To construct artificial null genes that match the distribution of
expression for the original real genes (but without being associated
with any particular cell types), the recall software gives users the
choice to implement a univariate parametric modeling approach,
which can be applied to each individual gene separately. By
default, the algorithm utilizes the ZIP model. Importantly, this
parametric generative method creates artificial null gene variables
that (1) do not have any association with any particular cell group
and (2) do not retain any covariance structure with the original
real genes (i.e., the null genes are also independently distributed).
The ZIP model mixes two generative processes—the first generates
zeros and the second is governed by a Poisson distribution that
generates counts (some of which may also be zero).'” For arandom
variable X ~ ZIP(mo, 1), we have the following mixture:

PriX = 0] = mo + (1 — mo) exp {— 4},

Xexp{—2}
x! ’

(Equation 3)
PrX =x = (1 — m)
where xe N is any non-negative integer value, 1 is the expected
count from the Poisson distribution (i.e., the rate parameter), and
mo is the proportion of extra zeroes arising in addition to those
from the underlying Poisson distribution. The maximum likelihood
estimators for the ZIP model, given the expression of the j-th gene,
take the following form'? (see Note S1 for full derivation):
~ . X;
A,-:Wo(fO;exp{fﬂ,‘})+0;,7ro,-: 71\*7
j

(Equation 4)

where 6; = X;/(1 —ry;) represents the sample mean of non-zero
counts, ro; = > ;0(xj = 0)/N denotes the proportion of observed
zeroes for the j-th gene across all cells (with [( -) being an indicator
function), X; is the sample average expression for the j-th gene of
interest, and Wy is the principal branch of the Lambert W func-
tion (i.e.,, Wy(a) = b implies b exp {b} = a). For each j-th real
gene x;, we fit the maximum likelihood estimators mp; and 7,-
and then sample the synthetic expression for the corresponding
artificial null gene as ¥; ~ ZIP(7j, 4;).

Independent NB distribution

As an alternative univariate approach, the recall software also gen-
erates independently distributed artificial null genes from a NB
model. Briefly, the NB distribution has a probability mass function

k+lr<+ 1>(1 _ p)kp,7
with the parameter r € N representing the number of successes, p e
[0, 1] as the probability of success in each experiment, and ke Ny as
an integer denoting the number of failures. When both r and p are
unknown, there is no analytic solution via maximum likelihood
equations. As a result, the recall software estimates the model pa-
rameters using the Nelder-Mead algorithm, which is implemented
via fitdistr under the MASS R package.”” When a gene expression
vector has a large number of zeroes, the Nelder-Mead algorithm
can be unstable. In this scenario, recall will call the fitdist function
from the fitdistrplus R package as an attempt to numerically find
maximum likelihood estimates for r and p.>! If this also fails, then
the software will estimate r and p via a method of moments.
Following this parameter estimation step, the synthetic expression
for artificial null genes is sampled as X; ~ NB(?j,ﬁ/-).

Correlated Poisson and NB distributions

To generate correlated artificial null genes where each gene margin-
ally follows either a Poisson or NB distribution, recall uses a
Gaussian copula as implemented in scDesign3.?* Copulas are a

PrlX =k] = < (Equation 5)

generalization of inverse transform sampling. Here, the goal is to
generate features from any arbitrary distribution by first randomly
sampling from a uniform distribution and then transforming those
draws via the inverse cumulative distribution function of the distri-
bution of interest. Copulas model the dependence between uni-
form random variables by applying the probability integral trans-
form to the data. The Gaussian copula is a specific family of
distributions over [0, l]G, where G is the number of artificial null
features defined by using the probability integral transform on a
multivariate normal distribution of dimension G. For the recall re-
sults in the main text, scDesign3 was used to generate correlated
count data with either a Poisson or NB marginal distribution where
the artificial null genes were assumed to come from a single group.
Countsplit

Countsplit is a method for generating independent train and test
splits for a dataset.” Again, let N be the number of cells and G the
number of genes in a dataset denoted by X. For context, two com-
mon approaches in model validation are (1) sample splitting and (2)
feature splitting. Sample splitting takes an N xJ matrix and samples
two matrices of dimensions N1 X G and N, X G (where N is the num-
ber of samples in one split and N, is the number of samples in the
other). Feature splitting, on the other hand, takes an N xJ matrix
and creates two matrices that are NXG; and NXG, (where G is
the number of features in one split and G; is the number of features
in the other). In contrast to these common approaches, countsplit
takes an NxG matrix and samples two matrices that are both of
dimension N X G. For data that are assumed to be Poisson distrib-
uted, countsplit is performed on a data matrix as follows:

X" ~ binomial (x;;, €), (Equation 6)

where Xtrain — [xtlrain xgain} Xtest - X — Xtrain and
0 < e < 1. Here, we use the default value of ¢ = 0.5. The key
result for countsplit is that if the data are Poisson distributed,
then X' is independent of X', The recall+countsplit algo-
rithm is implemented via the following steps.

(1) Sample X't and X" from the counts matrix of genes X.
(2) Perform the usual preprocessing on X'™", In this paper,
preprocessing consists of normalizing the expression
counts followed by PCA.

Apply a given clustering algorithm (e.g., the Louvain algo-
rithm) to the PCA embeddings of the augmented matrix
X (o, alternatively, apply the clustering algorithm to
the augmented matrix directly).

Conduct differential expression analysis between each k-th
and I-th cluster pair, denoted by Cx and C,, respectively.
Obtain p values for all genes (real and artificial nulls) across
each comparison.

3

=

(4

~

If, for any pair of clusters, there are no statistically significant
genes after the Bonferroni correction, then we return to step 3
and rerun the clustering algorithm with a smaller number of clus-
ters. However, if all pairs of clusters have statistically significant
genes in the test set after Bonferroni correction, then the inferred
cluster assignments are returned to the user.

Parameters for the recall algorithm

The default starting resolution parameter for the Louvain and Leiden
algorithms within recall is y = 0.8, the same as the default in the
FindClusters function in Seurat. Note that the optimal resolution
parameter 7 is estimated using the combined data frame with both
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the real gene expression matrix and the artificial null variables X* =

[X; X]. Once this parameter is estimated, recall does not perform any
re-clustering on just the original gene expression X (see rationale in
Note S2 and Figure S1). Since recall works by iteratively reducing the
starting number of clusters, if the starting resolution parameter is too
low (i.e., if you start with correctly calibrated clusters or under-clus-
ter), then there is no opportunity for recall to iteratively reduce the
number of clusters. There is a warning produced by the recall soft-
ware when this occurs, and users can rerun recall with a new param-
eter to begin with a larger number of clusters.

Simulation studies

For simple proof-of-concept experiments, we simulated scRNA-seq
data using the splatter R package,”* which implements a gamma-
Poisson model to create a count matrix for cells. In this study,
the one-group dataset was simulated with G = 1,000 genes and
N = 1,000 cells, while the three-group dataset was simulated to
have 1,000 genes and 4,000 cells, with the three groups being sepa-
rated in proportions of 0.6, 0.2, and 0.2, respectively. Differential
gene expression between the groups was controlled using the de.-
prob parameter with a value of 0.05. For the more comprehensive
benchmarking experiments where we compare recall to sc-SHC,’
CHOIR,"” and scAce,"! we additionally simulated five replicates of
datasets with 1, 5, and 10 groups each of varying sample sizes in
the range N = 5,000, 10,000, 25,000, and 50,000 cells. The group
proportions were drawn from a Dirichlet distribution with concen-
tration parameter « = (1,1,...,1). Here, each dataset was simulated
with G = 5,000 genes, and each was given a 10% probability of being
differentially expressed between groups. As part of these simulations,
we also include an additional study in which we assess the ability to
detect rare cell types. Here, we examine two cases where we

(1) vary the number of marker genes while holding the num-
ber of rare cells constant and

(2) vary the number of rare cells while holding the proportion
of marker genes constant.

In the first scenario, the number of rare cells is fixed at approx-
imately 1% of all simulated cells, while the other “common” cell
types are sampled with approximately equal proportions. The
rare cells are simulated such that 0.01, 0.02, 0.05, and 0.1 propor-
tion of their genes are differentially expressed; the other cell types
were simulated such that a proportion of 0.1 of their genes is
differentially expressed. In the second scenario, each cell type is
simulated to have the same fixed proportion of differentially ex-
pressed genes. The number of rare cells varied as we downsampled
the group size to contain 100, 150, and 200 cells. All rare cell type
simulations were conducted with G = 1,000 genesand N = 5,000
and 10,000 cells.

In order to quantitatively benchmark the performance of recall,
countsplit,” and ClusterDE® on marker gene detection, we
repeated simulation 2 above with only two cell types. Using
only two cell types simplified this particular analysis and made it
straightforward to assess different parameters that would affect
method performance. Specifically, we ran the three approaches us-
ing the following procedures.

e To run recall: cells were clustered using recall, and then the
FindMarkers function in Seurat was used on the resulting
cluster pairs (if there were any) to identify differentially ex-
pressed genes.

e To run ClusterDE: cells were clustered using the FindClusters
function in Seurat, and then ClusterDE was used on the re-
sulting cluster pairs (if there were any) to identify differen-
tially expressed genes.

e To run countsplit: the countsplit training cells were clustered
using the FindClusters function in Seurat, and then the
FindMarkers function in Seurat was used on the countsplit
test cells for each cluster pair (if there were any) to identify
differentially expressed genes.

Any genes identified between a pair of clusters were considered
“findings” by a particular method—this was to account for the fact
that a given clustering algorithm may have over-clustered. In this
scenario, under-clustering would result in only 1 cluster, and no
marker genes are identified. Each simulated dataset had five repli-
cates and consisted of N = 1,000 cells and G = 1,000 genes. We
considered three different scenarios where we split the cells into
90/10, 70/30, and 50/50 groups of two. Each cell type was simu-
lated to have 0.1, 0.2, 0.3, 0.4, and 0.5 proportions of its total
genes differentially expressed. We simulated each combination
of parameters five times. Performance was quantified using preci-
sion, recall (sensitivity), and the F1 score.

Data overview

Below, we briefly describe all of the datasets used in this work. All
datasets outside of the Tabula Muris were used exclusively to test
the scalability of recall and competing methods; therefore, clus-
tering performance was not recorded. All preprocessing steps
were done using the Seurat software package. For each of these da-
tasets, the count matrices were log normalized using the
NormalizeData function with the default parameters. Here, we
set the scale factor = 10,000. The number of variable genes was
set to 1,000 for all analyses. This was determined by using the
vst selection method implemented by the FindVariableFeatures
function. All data were centered and scaled using the ScaleData
function with default parameters, principal components were
computed with the RunPCA using the variable genes as input,
and the nearest-neighbor graphs were computed using the first
10 principal components within the FindNeighbors function.
Each evaluated method (recall, sc-SHC, CHOIR, and scAce) was
provided with the top 1,000 highly variable genes and the first
10 principal-component embeddings. The implementations of
the Louvain clustering algorithms analyzed the nearest-neighbor
graphs with resolution values set to y = 0.8.

Tabula Muris

To compare the clustering performance of recall against
competing methods, we utilized the 20 organs from the Tabula
Muris dataset.”* This dataset contains 53,760 total cells with hu-
man-curated cell type labels for each organ. After following the
quality control steps outlined in the original study (i.e., filtering
to exclude cells with less than 500 total genes detected and to
exclude cells with less than 50,000 total reads) and additionally
removing cells without a manually curated cell type label, we
were left with a total of 45,423 cells for the analysis.

PBMC 3K, Bone Marrow 30K, and Bone Marrow 40K

To assess the runtime and peak memory usage of recall and other
competing approaches, we utilized multiple datasets available
through the SeuratData R package (web resources). In particular,
we downloaded data under the pbmc3k, bmcite, and hcabm40k
variable names. For each of these datasets, recall was run with a
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larger starting resolution parameter of y = 1.5 to ensure that more
than one iteration took place.

PBMC 68K

We took scRNA-seq data from fluorescence-activated cell-sorted
(FACS) populations of peripheral blood mononuclear cells
(PBMCs) provided by Zheng et al." and concatenated each popula-
tion into one dataset. This dataset contains 68,579 cells with ten
different labels corresponding to each purified population that
was sorted. The dataset can be found on the 10x Genomics web-
site (web resources).

Liver 8K

This dataset contains 8,444 cells provided by MacParland et al.** It
can be loaded using the HumanlLiver R package (web resources).
For this dataset, recall was run with a larger starting resolution
parameter of y = 1.5 to ensure that more than one iteration
took place.

Results

The recall algorithm uses the guiding principle that well-
calibrated clusters (i.e., those representing real groups)
should have statistically significant differentially expressed
genes after correcting for post-selective testing, while over-
clustered groups will have much fewer. We use this rule to
re-cluster cells iteratively until the inferred clusters are well
calibrated and the observed differences in expression be-
tween groups are not due to the effects of double dipping.
We again emphasize that the main goal of recall is to pro-
vide users with the correct number of clusters. The ratio-
nale is that estimating the correct number of clusters mit-
igates the effects of double dipping on post-selective
inference for downstream analyses.

As a simple proof of concept, we simulated single-cell
gene expression data to compare the clusters found by
the widely used Louvain algorithm with default parameter
settings in Seurat (with the FindClusters function where
the resolution parameter is set to 0.8) versus using the
same Louvain algorithm paired with recall. We generated
data under two scenarios, each with 1,000 replicates. In
the first scenario, there was only one true cell type. Here,
the default approach with Seurat incorrectly identified
four to seven clusters in all 1,000 replicates (i.e., an error
rate of how many times more than a single cluster was
identified = 100%), while recall correctly identified only
a single cluster (error rate = 0%) (Figures 1B and 1C). In
the second scenario, we simulated data such that there
were three true cell types. Here, across each of the 1,000
replicates, the Seurat default incorrectly identified four
clusters by splitting the larger group into two clusters
(i.e., an error rate of how many times more than three clus-
ters were identified = 100%), whereas recall correctly iden-
tified three clusters (error rate = 0%) (Figures 1D and 1E).

As a more comprehensive benchmarking study, we
next simulated five replicates of datasets with 1, 5,
and 10 groups each of varying sample sizes in the range
N = 35,000, 10,000, 25,000, and 50,000 cells. Cell type pro-
portions were drawn from a Dirichlet distribution, which

allowed for a mixture between rare and common cell types
(see material and methods). We evaluated each strategy for
generating artificial null variables within recall and
compared them to three recently proposed methods for
preventing over-clustering: (1) sc-SHC,” (2) CHOIR,'? and
(3) scAce.'! Both sc-SHC and CHOIR utilize hierarchical
clustering paired with permutation tests to decide whether
or not to merge clusters, while scAce decides if a pair of
clusters should be merged by comparing inter-cluster
versus intra-cluster distances. To empirically assess the rela-
tive quality of clustering assignments resulting from each
method, we utilized common metrics including the
adjusted Rand index (ARI), the Jaccard index, the
Fowlkes-Mallows index (FMI), the V-measure, complete-
ness, and homogeneity.”® We include a vignette on these
cluster evaluation metrics showing their behavior in a sim-
ple case study of over-clustering and under-clustering
(Note S3; Figure S2). In the main text, we focus our ana-
lyses on the ARI due to its popularity in the field*® and
the V-measure because it is the harmonic mean between
completeness and homogeneity and balances the impact
of over-clustering and under-clustering.

The results for each method as evaluated by the V-mea-
sure (Figure 1F), ARI (Figure S3), completeness (Figure S4),
homogeneity (Figure S5), Jaccard index (Figure S6), and
FMI (Figure S7) show that recall+ZIP has performance
similar to sc-SHC, CHOIR, and scAce in simulation. The re-
call4+ZIP, recall+Poisson-copula, and recall+NB-copula al-
gorithms showed the best performance out of all the recall
variants. Performance in terms of computational efficiency
and peak memory consumption for each method is shown
in Figures S8 and S9, respectively. Here, the recall methods,
which simulate artificial genes from independent null distri-
butions, had short runtimes, similar to sc-SHC and scAce.
The CHOIR approach was the slowest competing method
when datasets were simulated to have 50,000 cells, and
the inference for the two recall copula algorithms was so
computationally demanding that they failed to even scale
to 50,000 cells. Overall, the combined need for both perfor-
mance and scalability made the independent ZIP the default
choice as the artificial variable distribution for recall.
Notably, the recall+ZIP model proved to be robust in
detecting rare cell types as a function of both the number
of marker genes and the total number of rare cells
(Figures S10-S15; see material and methods for details). In
one scenario where we have sparsely sampled and highly
heterogeneous populations (i.e., 5,000 cells with 10 groups),
recall+ZIP has a slightly worse ARI and V-measure (scoring
between 0.85 and 0.90 for both measures) when compared
to scAce and CHOIR (scoring between 0.95 and 1.0) but still
outperforms sc-SHC.

To evaluate the performance of recall on real scCRNA-seq
studies, we analyzed 20 different tissues from the Tabula
Muris dataset.”* We again compared recall (implemented
with each choice of null distribution for the artificial vari-
ables) to sc-SHC, CHOIR, and scAce; all recall results were
determined using the Louvain algorithm. We analyzed
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the 20 different tissues separately and evaluated the perfor-
mance of each method by comparing their inferred cluster
assignments to the manually curated cell type annotations
from the original Tabula Muris study.

When evaluated by the ARI (Figures 2A and S16), V-mea-
sure (Figures 2B and S17), completeness (Figure S18), ho-
mogeneity (Figure S19), Jaccard index (Figure S20), and
FMI (Figure S21), recall+ZIP shows state-of-the-art
performance. In particular, when evaluated by the ARI, re-
call+ZIP performs the best in 13 out of the 20 tissues, sc-
SHC performs the best in 2 tissues, CHOIR performs the
best in O tissues, and scAce performs the best in 5 tissues.
Similarly, when evaluated by the V-measure, recall+ZIP
performs the best in 15 tissues, while sc-SHC performs
the best in 1 tissue, CHOIR performs the best in O tissues,
and scAce performs the best in 4 tissues. The clustering re-
sults for all algorithms across all 20 tissues are displayed via
uniform manifold approximation and projection (UMAP)
plots in Figures $22-S41 (for visualization purposes only).
For many tissues, CHOIR tended to group cells into
many small sub-populations, while for other tissues, sc-
SHC severely under-clustered and failed to find any
distinct cell types at all, returning only a single group
(e.g., aorta, brain myeloid, and pancreas). In the dia-
phragm tissue, which contains five manually curated cell
types, recall+-ZIP and sc-SHC matched the five manually
curated cell type labels almost exactly, while CHOIR and
scAce over-clustered the data with 10 and 8 clusters,
respectively (Figure 2C). On the other hand, in the limb
muscle dataset, which contains six manually curated cell
types, recall+ZIP finds six clusters that closely match the
manually curated labels (ARI = 0.97 and V-measure =
0.95), while sc-SHC finds 8 clusters (ARI = 0.74 and
V-measure = 0.79), CHOIR finds 16 clusters (ARI = 0.40
and V-measure = 0.69), and scAce finds 11 clusters
(ARI = 0.54 and V-measure = 0.76) (Figure 2D). In terms
of calling clusters exactly according to the curated cell
type groups, recall matched the correct number of clusters
in 3 tissues (aorta, diaphragm, and limb muscle), and sc-
SHC matched the correct number of clusters in 1 tissue
(mammary gland), while CHOIR and scAce both matched
the correct number of clusters in O tissues (Figure S42).

We next investigated the power of each algorithm to
detect rare cell types in the Tabula Muris study
(Figure S43). We chose to focus on the macrophages in
the limb muscle and T cells in the diaphragm because
they had the fewest number of cells in their respective tis-
sues (N = 31 and 35, respectively) (Figures S43A and
S$43D). In this experiment, we re-applied each clustering
method to each tissue type, with the macrophages and
T cells downsampled to have N =5, 10, 15, 25, and 30 cells
in the dataset (Figures S43B and S43E). The main goal of
this analysis is to assess when each method is no longer
able to differentiate the rare cells as being their own indi-
vidual cluster. When analyzing macrophages in the limb
muscle, this threshold was N = 20 cells for recall+ZIP
and N = 25 cells for sc-SHC (Figure S43C). Interestingly,

CHOIR and scAce occasionally found more clusters after
downsampling the macrophages. In the case of T cells in
the diaphragm, while recall+ZIP stopped detecting the
rare cell type at N = 25 cells, it was still more accurate
and stable than sc-SHC, CHOIR, and scAce—all of which
consistently, greatly over-clustered in each scenario
(Figure S43F). The fact that these methods often over-clus-
tered is a possible explanation for why CHOIR and scAce
outperformed recall+ZIP in the rare cell type simulation
with 10 cell types, albeit by a small difference in the ARI
and V-measure (Figures S14 and S15).

Importantly, recall+ZIP exhibited better computational
efficiency (i.e., shorter runtime) than the other methods.
After running each method on a personal laptop with 6
CPU cores, recall+ZIP was overall the fastest, both sc-
SHC and scACe exhibited similarly short runtimes, and
CHOIR was the slowest (Figure 2E). For example, in the
fat tissue, recall+ZIP finished 0.9 min faster than sc-SHC,
1.4 min faster than scAce, and 15.0 min faster than
CHOIR.

To empirically show that the effect of double dipping on
downstream tasks is minimized when the correct clusters
are estimated, we further compared the clusters deter-
mined by the default Seurat implementation of the Lou-
vain algorithm to the clusters determined by the Louvain
algorithm with recall+ZIP for the limb muscle tissue in
the Tabula Muris study (Figures 3A-3C). Mimicking the
typical differential expression workflow, we used the
FindMarkers function to identify the top 10 marker genes
for each cluster inferred by the Seurat default and
recall+ZIP. Qualitatively, the default Louvain implementa-
tion appears over-clustered, where inferred clusters 1, 2, 6,
and 7 show similar marker gene expression to one another,
as do inferred clusters 3 and 5 (Figure 3D). In contrast, the
groups found by recall+ZIP show much less shared expres-
sion between clusters (Figure 3E). To further investigate
whether cells had been over-clustered by the default Lou-
vain algorithm, we performed differential expression anal-
ysis between its inferred clusters and observed a high cor-
relation in p values when comparing (1) inferred clusters
1 and 2 versus 3 (Pearson correlationr = 0.923) and (2) in-
ferred clusters 1 and 2 versus 5 (r = 0.925) (Figure 3F). For
the default Louvain algorithm, inferred clusters 1 and 2
both correspond to skeletal muscle satellite cells as anno-
tated by the Tabula Muris Consortium, and inferred clus-
ters 3 and 5 correspond to mesenchymal stem cells. As a
comparison, for recall+ZIP, only inferred cluster 1 corre-
sponds to skeletal muscle satellite cells, and only inferred
cluster 2 corresponds to mesenchymal stem cells. Differen-
tial expression analysis for the recall+ZIP clusters
(Figure 3G) results in 506 differentially expressed genes
(adjusted p value < 0.05 and an absolute log fold change
greater than one), which include many known skeletal
muscle satellite cell markers up-regulated in its inferred
cluster 1 relative to its inferred cluster 2 (e.g., Des, Chodl,
Myl12a, AsbS, Sdc4, Apoe, Musk, Myf5, Chrdl2, and
Notch3)”” and mesenchymal stem cell type markers

946 The American Journal of Human Genetics 712, 940-951, April 3, 2025



ARI V-measure
Brain Brain Brain Brain |
Aorta Bladder Myeloid Non-Myeloid Aorta Bladder Myeloid Non-Myeloid ‘
1.0 0955 1.0
0776 0.711 0.819 s 7 0.869 7 7
“l i "als N bl 0" N
0.204
00 0000 Smmal ]| 222 0000 0014 0055 . 0.0 0,000 . N 0,000 051,
Diaphragm Fat Heart Kidney Diaphragm Heart Kidney ‘
10 0.731 || 0768 R . 10 228 0763 0.7¢ e 0843 || 0.858 0839 0819 || 764 otze
- U | 059“ il i |:| l [| irsj i - l DSQS|: IDﬁD I im
167
L it L .
Large Limb : Large Limb "
Intestine Muscle (e g Intestine Muscle iz (L
1.0 0968 S0
T ] o7 § 0,608 L34 geop 0105 || 0792 0685 (a9 g 01 0670
0.5 0.400 o 2.458 0.5 0.412
e D e weat e OEON0 =
0.157
oo I Tuges /I | BTN
Ry Marrow Pancreas Skin Mg{;’;‘gry Marrow Pancreas Skin
1.0 1.0
oass e s 0735 0.820 0755 0737 0785 0724
05 “‘7 0619 0544 25 0 451
| RN S . I
00 ... Clel |,
Spleen Thymus Tongue Trachea Spleen Thymus Tongue Trachea
1.0 1.0 7 24
0.684
05 05 i 0501 0474 0513 0484
2 ' B i i DﬁD
o Y s | i o 00 00| RS0, oo | O 49
Tabula Muris Tissues Tabula Muris Tissues
Method [l recall+z1P [[] sc-sHC [l] CHOIR [[] scAce Method [l recall+z1P [[] sc-sHC [l CHOIR [[] scAce
c Curated Labels recall+ZIP sc-SHC CHOIR scAce
c Y - Y . Y
o)) - . AY - . Ay L . \Y - . \ L . %
& o & & o X o o L 4 5 &
=
c < < < < <
S = - = - = a = - = -
« skeletal muscle % o} A} o} A ) =} A Y = | A Y
a - satellite stem cell
ol ARI: 0.98 ARI: 0.97 ARI: 0.56 ARI: 0.59
Do V-measure: 0.97 V-measure: 0.95 V-measure: 0.76 V-measure: 0.79
UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1
D Curated Labels recall+ZIP sc-SHC CHOIR scAce
p A A A A A
[3]
N =N o oy - o oy - gl By - N -
S ale ol e ol e ol e ol «
= < < < < <
s 3 ¥ 2 ¢ : ¢ E ¢ : ¢
{f il
[S Shreitg ol *B el
3 «esoncmmal, « ARI : 0.97 ARI: 0.74 ARI: 0.40 ARI: 0.51
e Tea V-measure: 0.95 V-measure: 0.79 V-measure: 0.69 V-measure: 0.76
UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1
Brain Brain " Large Limb
L ity ‘ Myeloid Non-Myeloid Dl IFet il Wibizy Intestine Muscle
1!
15 13.1
,‘.I;.‘o 101
2
g 5 T 2.8
E oloi ot mileoe &%ﬁﬁ_ﬁ-. 0. 00 Y| oo MY | or o i 0n || 0ot Y| oo || o1 02 ki 00 |2 NE | oo oo e,
S Liver Lung ‘ Mgl"a’ggry Marrow Pancreas Skin Spleen Thymus Tongue Trachea
T
©
s
© 12
E 10 111
E
. 59 50 53 57
36 F
0loL 0o mim0s oo o llor | oo oo Mo | oe Y |0 0 ﬁ&. 04 r-‘-“ﬁ..‘—_". 02 04 .\"—_ﬂ. 0z 05 o6 || o2 0 [l 06 || o ,ﬂ—\.&
Tabula Muris Tissues
Method [l recal1+21P [[] sc-sHC [l CHOIR [[] scAce
Figure 2. recall+ZIP shows state-of-the-art clustering performance on the Tabula Muris dataset

(A and B) Comparison of recall+ZIP, sc-SHC, CHOIR, and scAce using (A) ARI and (B) V-measure for each tissue type in Tabula Muris.
(C and D) Uniform manifold approximation and projection (UMAP) plots displaying the cell type annotations for (C) the diaphragm
tissue and (D) the limb muscle tissue datasets. From left to right, we show the manually curated labels from the original study and clusters
inferred by recall+ZIP, sc-SHC, CHOIR, and scAce.

(E) Runtime comparison of recall+ZIP, sc-SHC, CHOIR, and scAce for each tissue in the Tabula Muris dataset. Each method was run using
6 CPU cores to emulate the use of a personal laptop.
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Figure 3. Using recall+ZIP to avoid over-clustering leads to improved hypothesis generation for downstream analyses

(A-C) Uniform manifold approximation and projection (UMAP) plots of the (A) manually curated cell ontology class labels, (B) inferred
clusters using the Louvain algorithm with default parameter settings in Seurat, and (C) inferred clusters using the Louvain algorithm
paired with recall+ZIP for the limb muscle tissue from the Tabula Muris study.

(D) Heatmap of the top 10 marker genes for each inferred cluster shown in (B) with the default Louvain implementation.

(E) Heatmap of the top 10 marker genes for each inferred cluster shown in (C) with the Louvain algorithm paired with recall+ZIP.

(F) Scatterplots and corresponding Pearson correlation coefficient (r) of the —log,, p values for all genes being tested for
differential expression between (1) inferred clusters 1 and 2 versus 3 (top, r = 0.923) and (2) inferred clusters 1 and 2 versus 5 (bottom,
r = 0.925) from (D) using the default Louvain algorithm in Seurat.

(G) Volcano plot of all genes being tested for differential expression between inferred clusters 1 and 2 from (E) using the recall+ZIP
version of the Louvain algorithm. The genes colored in red and blue are those with a significant p value after Bonferroni correction
and with a log, fold change greater than 1 (i.e., up-regulated in cluster 1) or less than —1 (i.e., up-regulated in cluster 2), respectively.
The inferred cluster 1 from recall+ZIP corresponds to skeletal muscle satellite cells and cluster 2 corresponds to mesenchymal stem cells.
The genes that are labeled are well-known markers of both skeletal muscles (red, up-regulated in cluster 1 relative to cluster 2) and cardiac
mesenchymal stem cells (blue, up-regulated in cluster 2 relative to cluster 1).
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up-regulated in the inferred cluster 2 relative to the in-
ferred cluster 1 (e.g., Col6a3, Collal, Igfbp6, Pdgfra, Cls,
Mfap5, Ecm1, Dcn, and Dpepl).”®

We then benchmarked the quality of marker genes
found after calibrating clustering with recall+ZIP versus
the genes that were selected after using countsplit’ and
ClusterDE,° both of which are differential expression ap-
proaches that correct for double dipping. Once again, we
assessed the differentially expressed genes between clus-
ters corresponding to skeletal muscle satellite cells and
mesenchymal stem cells in the limb muscle tissue
(Figure S44A). The countsplit approach generates clusters
using a training dataset and then tests for differential
expression on a test dataset; alternatively, ClusterDE uses
the Seurat default clusters. Both recall and ClusterDE®
make use of synthetic null variables. The key distinction
between these methods is that ClusterDE takes pre-identi-
fied cell clusters and computes artificial null data to cali-
brate statistical null hypothesis tests between those clus-
ters, while recall computes artificial null data on the full
dataset first and uses the augmented data matrix as input
to the clustering algorithm to calibrate the choice of clus-
ters. The p values obtained by recall+ZIP were highly corre-
lated with those obtained via countsplit (r = 0.909;
Figure S44B) and moderately correlated with the g values
produced by ClusterDE (r = 0.652; Figure S44C). Note
that the latter result is limited by the fact the most signif-
icant genes detected by ClusterDE all have the same g
value. Since countsplit has been proven to produce well-
calibrated p values,” we investigated why the p values pro-
duced by recall+ZIP appeared to be inflated (i.e., greater in
magnitude on the —log scale; Figure S44B). Noticing that
the recall+ZIP inferred clusters had more cells because
the algorithm aims to protect against over-clustering, we
randomly downsampled them uniformly to be an analo-
gous size to the clusters identified by countsplit. The p
values resulting from these downsampled recall+ZIP clus-
ters were then on the same order of magnitude as the
countsplit p values (Figure S44D). This demonstrates that
when clusters are indeed well calibrated, marker genes
can be detected with increased statistical significance.
The high overlap of differentially expressed genes identi-
fied by all methods is shown in Figure S44E. There are
more marker genes detected by ClusterDE, most likely
because it controls false discovery rates at 5%. This is a
less stringent criterion than what is applied in recall+ZIP
and countsplit, which both use Bonferroni correction to
control the family-wise error rate at 5%.

Since this analysis on real data only qualitatively assesses
these three methods, we performed an additional set of
simulations (described in detail in material and methods)
to better evaluate their ability to detect marker genes in a
controlled setting (Figure S45). Overall, recall+ZIP and
ClusterDE showed very similar performances in terms of
precision, recall (i.e., sensitivity), and F1 score across vary-
ing cluster sizes and numbers of differentially expressed
genes. On the other hand, while countsplit had similar pre-

cision, it had a much worse sensitivity and F1 score across
the different settings.

As a final analysis of computational scalability, we bench-
marked the runtime and peak memory use of recall+ZIP, sc-
SHC, CHOIR, and scAce on several other publicly available
datasets containing N = 2,700, 8,444, 30,000, and 40,000
cells (Figures S46 and $47).”>??*° Each method was run
on a machine with 16 CPU cores, and we ran an additional
version of scAce on a GPU. On these datasets, sc-SHC was
the fastest, recall+ZIP was a close second, the two scAce im-
plementations were third and fourth, and CHOIR was an or-
der of magnitude slower than all three other methods in last
place. Additionally, we applied each method using their
default settings on subsets of the 68,579 total PBMCs pro-
vided by Zheng et al." as well as on the full dataset. These
subsets were of sizes N = 1,000, 2,000, 5,000, 10,000,
20,000, 30,000, 40,000, 50,000, and 60,000 cells. On these
subsets, both recall+ZIP and sc-SHC were very similar in
speed, while CHOIR was again an order of magnitude
slower (Figure S48). In terms of peak memory consumption,
recall+ZIP used the least memory, while sc-SHC showed
quadratic memory growth as a function of the number of
cells (Figure S49). In summary, recall+ZIP is as fast (or faster)
than alternative approaches and uses less memory. Notably,
the recall algorithm required less than 10 GB of memory on
datasets with nearly 70,000 cells and was able to cluster
those cells in less than 15 min with 16 CPU cores. This scal-
ability analysis demonstrates the ability to analyze large da-
tasets with recall on a personal laptop.

Discussion

In conclusion, we present recall, an approach aimed at pro-
tecting against over-clustering when analyzing single-cell
transcriptomic data. The goal of recall is to provide users
with calibrated cluster assignments under the principle
that, when correctly inferred, the effect of double dipping
on downstream tasks (e.g., differential expression analyses)
is minimized. Through the analysis of several large-scale
datasets, we demonstrated that recall provides state-of-
the-art clustering results at a fraction of the runtime and
computer memory when compared to other competing al-
gorithms. Importantly, recall can be efficiently run on a
personal laptop when analyzing tens of thousands of cells.
We note that cells may exhibit a variety of heterogeneous
cell states, continuous axes of variation, or other complex-
ities beyond discrete groups, for which recall, or any clus-
tering algorithm, is not perfectly suited. With its speed
and flexibility, recall will save practitioners the hours often
spent manually investigating and re-clustering scRNA-seq
datasets. We envision that recall will be a useful aid when
needing to assign labels to unknown cell types.

The recall approach is not without its limitations. First,
the algorithm works downward from an upper bound
on the number of clusters (often parameterized by K in
the literature). This strategy could potentially lead to
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under-clustered results if the starting upper bound is too
conservative (i.e., if K is too small). Recall can be initialized
with a large set of clusters to circumvent this limitation;
however, this will come with an additional computational
cost because more iterations will likely need to be per-
formed until the algorithm converges onto a statistically
appropriate number of clusters. Second, while the recall
software flexibly allows for artificial null genes to be gener-
ated from a wide range of probabilistic distributions, the
choice of prior distribution is ultimately left up to the
user. As shown in both our simulations and analyses on
the Tabula Muris dataset, if the synthetic null genes are
generated such that the underlying assumptions of the
original single-cell data are not met, then recall can be un-
derpowered (Figure 1F). Due to the desire to have a method
that is both well powered and scalable, we highlighted the
independent ZIP model as the default choice for construct-
ing artificial variables. A key area of our future work is to
extend the recall algorithm to select the most appropriate
null distribution adaptively in a data-driven way, for
example, via model selection by comparing the maximized
likelihood of distributions fit over the original data. Third,
the current implementation of recall does not account for
additional metadata or confounding that might be present
in a scRNA-seq dataset. For example, in the presence of
batch effects, spurious relationships between cells can be
created, and recall might determine that cells of the same
type need to be partitioned into different groups (or vice
versa). To that end, incorporating data integration steps,
like batch effect correction, into the recall software is a rele-
vant direction for future work. One possible extension of
the recall algorithm would be to run an integration
approach (e.g., Harmony®') on the principal-component
embeddings of the augmented count matrix to correct
for possible confounding before building a K-nearest
neighbor graph and performing calibrated clustering.

Data and code availability

All code is available under the open-source MIT license at https://
github.com/Icrawlab/recall with documentation at https://
Icrawlab.github.io/recall. The scripts used to analyze the data and
reproduce the figures of this paper are available at https://github.
com/Icrawlab/recallreproducibility. The fully rendered results can
also be viewed at https://Icrawlab.github.io/recallreproducibility.
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Supplemental Note 1

In this Supplemental Note, we derive the maximum likelihood estimates (MLE) for the zero-inflated
Poisson (ZIP). The ZIP model mixes two generative processes—the first generates zeros and the second
is governed by a Poisson distribution that generates counts (some of which may also be zero). For a
random variable X ~ ZIP(mg, \), the probability mass function is

PriX =0] = m+ (1 —m)exp{—-A},  PrlX =a]=(1— wo)”%!{_” (1)

where z € NT is any non-negative integer value, A is the expected count from the Poisson distribution
(i.e., the rate parameter), and 7 is the proportion of extra zeroes arising in addition to those from the
underlying Poisson distribution. The log-likelihood equation for the ZIP model, given the expression of
the j-th gene, takes the following form

A” exp{—A\}
x! '

U, Ny X1,y Tpy) = Z log [mo + (1 — mp) exp{—A}] + Z log [(1 — mo)

i:x;=0 i #0

(2)

We now derive the MLEs for unknown parameters mp and X. Let 79 = ), I(z; = 0)/n denote the
proportion of observed zeroes for a given feature across all samples (with I(e) being an indicator function).
Notice that Eq. (2) simplifies to the following

(o, N &1, ..., Tp) = nrglog [mg + (1 — o) exp{—A}] + n(1 — ro)[log (1 — mp) — A] + nZlog A.  (3)

We now can find the closed form estimates for both parameters in two parts.

Estimating equation for \

To begin, we take the partial derivative of Eq. (3) with respect to mg. This takes the following form

O an(—epA)  a(l—n)
oy mo+ (1 —m) exp{—A\} 1—m

(4)
Next, we set this expression equal to 0 and simplify such that

nro(1 — exp{-A})(1 = 7o) — n(1 = 16)(mo + (1 — ) exp{—A}) = 0. (5)
We then may solve for my and get the follow expression

~exp{A}lrg—1
exp{A\} -1

Treating 7y as a nuisance parameter, we can substitute this back into the log-likelihood in Eq. (3) to
obtain the profile log-likelihood for A where

(6)

Ly(U(mo, A1, .., Ty o) = —n(1 — 19) [A + log (1 — exp{—A})] + nZlog A + constant. (7)
Taking the derivative of the profile log-likelihood in Eq. (7), with respect to A, yields

0l,  exp{An(l —ro) nx
X exp{A}—1 : EY ®)

Next, we set this expression equal to 0 and simplify such that

0=01—-ro)A+T(1 —exp{-A}) <= z(1—exp{—A})=A1—10) (9)
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which is widely reported in the literature [6, 7]. Typically, it is claimed that the right hand expression
of Eq. (9) must be solved numerically; however, it was recently shown that this equation can be solved
using the principal branch of the Lambert W function [7]. Let 8 = z/(1 — rg) and Wy be the principal
branch of the Lambert W function (i.e., Wy(a) = b implies bexp{b} = a). In this case, Eq. (9) is then

o— ﬁ. (10)
The key now is to isolate A. We start making the following transformation
A=0(1—exp{—A}). (11)
Next, we subtract 6 from both sides of the equation and simplify the expression to be
A—0=—0exp{—)\}. (12)
Then, we multiply both sides of the expression by exp{A — 6} such that
(A —0) exp{X — 0} = —Oexp{—0}. (13)

It is important to notice that this the above is of the form bexp{b} = a and can be inverted using the
principal branch of the Lambert W function to obtain

A — 0 = Wo(—0exp{—0}). (14)

Finally, this gives us the MLE as A\ = Wy(—6 exp{—0}) + 6.

Estimating equation for 7

Remember in Eq. (6), we showed that the partial derivative of the log-likelihood in Eq. (3) with respect
to 7o simplified to

_exp{A}rg—1
~exp{A\} -1

Furthermore, using the profile likelihood in Eq. (9), we also derived that

1—7"0

Z(1—exp{-A}) =A1—-1ry) <= N TP{*/\}.

Subtracting by 1 on both sides of Eq. (16) and simplifying, we can rearrange this expression to be

1—rg
1 —exp{—X}
(A}~ exp(Aro
exp{A} —1 (17)
exp{A\}ro—1
exp{A} —1

= T

=1

Therefore, the maximum likelihood estimate is 7p = 1 — &/ A
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Supplemental Note 2

Consider a study with single-cell RN A sequencing (scRNA-seq) expression data for i = 1,..., N cells that
each have measurements for j = 1,..., G genes. Let this dataset be represented by an N x G matrix X
where the column-vector x; denotes the expression profile for the j-th gene. In the recall framework,
we generate an artificial null expression vector x; for each gene in the study x;. Next, we concatenate
all of the synthetic genes together and construct a matrix of artificial null variables X = [X1,...,Xqg].
During an analysis, recall finds the optimal resolution parameter for the Louvain algorithm (denoted
as 7 in the main text) by using the combined data frame containing both the real gene expression matrix
and the artificial null variables X* = [X; X]. In this Supplemental Note, we demonstrate why recall
does not perform any re-clustering on just the original gene expression X once the resolution parameter
is estimated. To do this, we use a small scRNA-seq study of peripheral blood mononuclear cells (PBMCs)
from 10x Genomics (via reproducible R code below). We begin by loading in the required packages and
the single-cell dataset.

### Set seed for reproducibility ###
set.seed(1234)

### Load in libraries and packages ###
library(Seurat)

library(recall)

library(SeuratData)

library(ggplot2)
library(recallreproducibility)

### Load in data ###
data("pbmc3k")

Next, we process the single-cell dataset with a typical bioinformatic workflow using Seurat [8].

pbmc3k <- UpdateSeuratObject (pbmc3k)

pbmc3k <- NormalizeData(pbmc3k)

pbmc3k <- FindVariableFeatures (pbmc3k)
pbmc3k <- ScaleData(pbmc3k)

pbmc3k <- RunPCA (pbmc3k)

pbmc3k <- FindNeighbors (pbmc3k)

pbmc3k <- RunUMAP (pbmc3k, dims = 1:10)

Now, we run a calibrated clustering analysis using recall on the concatenated data X.

pbmc_recall <- FindClustersRecall (pbmc3k) ]

The optimal resolution parameter used by recall for the Louvain algorithm was v = 0.4096. To demon-
strate the main point of this vignette, we feed this resolution parameter v back in the Louvain algorithm
and allow it to perform clustering on the original gene expression data X only.
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pbmc_default <- FindClusters(pbmc3k, resolution = 0.4096)

Finally, we plot uniform manifold approximation and projection (UMAP) plots with each of the cluster
labels applied (for visualization purposes only).

umap_recall <- custom_scatter(pbmc_recall,

"1].map n ,

group_by = "recall_clusters",
x_title = "UMAP 1",

y_title = "UMAP 2",

pt.size = 2) +
Seurat: :NoLegend ()

umap_default <- custom_scatter(pbmc_default,

"umap",

group_by = "seurat_clusters",
x_title = "UMAP 1",

y_title = "UMAP 2",

pt.size = 2) +
Seurat: :NoLegend ()

cll <- patchwork: :wrap_elements(panel =
grid::textGrob(’Initial clustering\nwith recall’,
gp = grid::gpar(fontsize = 64)))

cl2 <- patchwork: :wrap_elements(panel =
grid::textGrob(’Re-clustering with
\nnew recall resolution’,
gp = grid::gpar(fontsize = 64)))
comparison_umap <- cll + cl2 +
umap_recall + wumap_default +
patchwork: :plot_layout(widths = c(5, 5),
heights = c¢(1,3))

ggsave("rerun_clustering.png", comparison_umap, dpi = 600,
width = 24, height = 12, units = "in")

As evident in Fig. S1, the clusters obtained by each method (even with the same resolution parameter)
are different — this is because the optimization ultimately happens on different sets of input data.
Specifically, there were 8 clusters identified by recall on the combined data frame containing both the
real gene expression matrix and the artificial null variables X* = [X X], but 9 clusters identified by the
Louvain algorithm with the same resolution when run only on the original data X.
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Supplemental Note 3

In this Supplemental Note, we detail the metrics used to evaluate the quality of clustering assignments
against ground truth, which are referred to as extrinsic clustering metrics. For the analyses conducted in
the main text, we use the manually curated cell type annotations from the original studies as a proxy for
ground truth labels. All of the metrics described here (except for the adjusted Rand index) vary between 0
(poor agreement between inferred cluster assignments and ground truth) and 1 (good agreement between
inferred cluster assignments and ground truth). The adjusted Rand index (ARI) ranges between [-1/2,
1] where 1 represents perfect agreement between label sets, 0 represents random agreement, and negative
values represent worse than random agreement [1]. There are two broad classes of clustering evaluation
metrics utilizing ground truth labels: (1) confusion matrix-based metrics which are based on notions of
true positives, true negatives, false positives, and false negatives, and (2) entropy-based metrics which
measure the uncertainty in inferred clustering assignments given a set of reference labels (and vice versa).

Confusion Matrix-Based Cluster Evaluation Metrics

The typical confusion matrix is defined as follows for a classification problem with 2 classes.

True Label
Class 1 Class 2 | Total
Inferred Label Class 1 v FP a1
Class 2 FN TN as
Total by bo n

where TP is the number of true positives, FP is the number of false positives, TN is the number of true
negatives, and FN is the number of false negatives. This can be similarly defined for a classification
problem with an arbitrary number of classes. Since a clustering result may have a different number of
inferred clusters than the number of true labels and since it is not immediately obvious how to know
which true label an inferred cluster might correspond to, we instead define these metrics over pairs of
points in the following way:

e True positives (TP) is the number of cell pairs that have the same true labels and are assigned the
same inferred labels after clustering.

e True negatives (TN) is the number of cell pairs that have different true labels and also have
different inferred labels after clustering.

e False positives (FP) is the number cell pairs that have different true labels but are assigned the
same inferred labels after clustering.

e False negatives (FN) is the number of cell pairs that have the same true labels but are assigned
different inferred labels after clustering.

We describe a series of confusion matrix-based cluster evaluation metrics below using these concepts. To
simplify notation, we will let n;;, a;, and b; be values obtained from a contingency table, and n =},  Tij
for indices @ and j € {1,2}. To be specific, TP = nj; , FP = nja, FN = ng;, and TN = nag, respectively.
An illustration of these metrics can be found in Fig. S2.
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Adjusted Rand Index (ARI)

The adjusted Rand index (ARI) captures the similarity between labels inferred by a clustering algorithm
and the reference labels. It is based on the Rand index (RI) which is computed as the following

TP + TN by

Rl= o PN IN 0 (18)

The ARI corrects for the RI measurement’s sensitivity to chance via permutation [2] where

nij\ _ (@i ] b; n
i BZERD S0 -[SHESE6 )

FERL )+ ()] - 6D G 6)

Here, E[RI] denotes the expectation of the Rand index.

Jaccard Similarity Index

For high-dimensional single-cell studies with a large number of both cells and cell types, the number of
true negatives can be quite large. The Jaccard similarity index captures the amount of overlap between
two finite sets. Overall, the Jaccard index can be a useful alternative to the ARI because it ignores the
contribution of the true negatives. Formally, it is defined as the following

TP ni1

J: =
TP+FP+FN ap +n21

(20)

which ranges between [0, 1] where 1 denotes complete overlap between the inferred and true cluster labels,
and 0 signifies no overlap.

Folkes-Mallows Index (FMI)

The Folkes-Mallows Index is the geometric mean of the positive predictive value (PPV) and the true
positive rate (TPR) [3]. More concretely, these values are computed via the following

TP n11 TP ni11

= = TPR= ———— = 21
TP+FP a1 ( )

PPV = — 1
TP +FN b1

A higher value for the Fowlkes—Mallows index indicates a greater similarity between the inferred clusters
and the true labels. This is computed by

FMI = PPV x PPR. (22)

The FMI is also on the unit scale ranging from [0, 1] where 0 corresponds to the worst inferred clusters
such that both inferred and true groups are completely unrelated, and 1 corresponds to the scenario in
which both groupings perfectly agree.

Entropy-Based Cluster Evaluation Metrics

Entropy-based clustering metrics aim to quantify the amount of information shared between the inferred
label distribution and the reference label distribution. We describe a series of these metrics below.
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Completeness

Completeness describes the uncertainty in the inferred clustering assignment conditioned on the true
labels where 1 is a “good” value for satisfying completeness. In other words, it quantifies how often cells
of the same type are also in the same cluster. Formally,
H(A|B
c—1-HAID (23)
H(A)
where B represents the set of true labels, A represents the inferred clustering assignments, and H(+)
represents the Shannon entropy of a given label distribution [4]. When all cells from true group B
belong to the same inferred cluster, the completeness metric equals 1. For the degenerate case where
H(A, B) =0, we define C' = 0.

Homogeneity

Homogeneity describes the uncertainty in the true label conditioned on the cluster assignment where 1
is a “good” value for satisfying homogeneity. In other words, it quantifies the amount that cells within a
cluster are also from the same cell type. Formally, homogeneity is defined
H(B|A
=1 B4 (24)
H(B)
where, again, B represents the set of true labels, A represents the inferred clustering assignments, and
H(-) represents the Shannon entropy of a given label distribution [4]. When all cells from all of the
clusters contain only cells that are from the same true group, the homogeneity metric equals 1. For the
degenerate case where H(A, B) = 0, we define H = 0.

V-Measure Balances Between Completeness and Homogeneity

A key observation when using completeness and homogeneity to evaluate clustering algorithms is that
they tend to penalize over- and under-clustering, respectively.

e Consider a simple example of over-clustering where there is a group of cells that is split in half into
two clusters. Then the uncertainty in the inferred clustering assignments A, given the true labels B,
is high because half of the group is in each cluster. Formally, this means that the Shannon entropy
H(A|B) is high and so the completeness will be low.

e On the other hand, consider a simple example of under-clustering where two different cell groups
are assigned to the same cluster. Then the uncertainty in the true group labels B, given the inferred
clustering assignments A4, is high because the cells in the cluster could come from either of the two
groups. Formally, the entropy H(5|.A) is high and so homogeneity will be low.

The V-measure is defined as the weighted harmonic mean of completeness and homogeneity where

_ (1+p)HC
V(B) = “BH+C (25)

where S dictates the contribution of completeness versus homogeneity [4]. In this paper, we set § = 1
such that the two are weighted equally and the V-measure is simply
which is the simple harmonic mean of completeness and homogeneity. The V-measure ranges between
[0, 1] where 1 represents total information sharing between label sets and 0 represents no information
sharing between label sets. It requires that both homogeneity and completeness are maximized and will
be zero if a clustering algorithm completely fails to satisfy either of the two properties.

(26)
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Simulation Study: Behavior of Cluster Evaluation Metrics

In order to quantitatively demonstrate the behavior of both the confusion matrix-based and entropy-
based clustering metrics, we consider a synthetic dataset with three groups of cells (see Fig. S2). When
an algorithm under-clusters, it will merge two of the clusters; while, when an algorithm over-clusters,
it will infer a fourth group made up of cells from two of the true groups. The table below shows the
behavior of different clustering evaluation metrics in the cases when an algorithm finds the true groups,
under-clusters, and over-clusters.

Metric True Groups Under-Clustered Over-Clustered
ARI 1.0 0.55 0.83
Jaccard index 1.0 0.58 0.78
FMI 1.0 0.76 0.88
Homogeneity 1.0 0.54 0.94
Completeness 1.0 0.92 0.77
V-measure 1.0 0.68 0.85

Notice that ARI, Jaccard index, and homogeneity qualitatively perform similarly by penalizing under-
clustering more than over-clustering. In contrast, completeness penalizes over-clustering and rewards
under-clustering. FMI and V-measure balance between both metrics. For this reason, in the main text,
we focus on ARI due to its popularity in the literature [5] and V-measure because of its ability to balance
the impact of over-clustering and under-clustering when evaluating recall, sc-SHC, CHOIR, and scAce.
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Figure S1. Uniform manifold approximation and projection (UMAP) plots comparing clus-
tering results when the original gene expression data is reclustered using the resolution
parameter estimated by recall. On the left hand side, clustering is shown for the normal workflow
where recall finds the optimal resolution parameter for the Louvain algorithm (denoted as «y in the main
text) by using the combined data frame containing both the real gene expression matrix and the artificial
null variables X* = [X; X] On the right hand side, the Louvain algorithm re-clusters on just the original
gene expression X once the resolution parameter is estimated via recall. The clusters obtained by
each method (even with the same resolution parameter) are different — this is because the optimization
ultimately happens on different sets of input data. Specifically, there were 8 clusters identified by recall
on the combined data frame (used for controlling calibration), but 9 clusters identified by the Louvain
algorithm with the same resolution when run only on the original data.
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11

Figure S2. Demonstration of cases of over- and under-clustering in single-cell analyses. Here,
we generate synthetic data from a Gaussian mixture model. Data are created such that there are three
true groups. Panel (A) shows a depiction of the true cluster labels and the inferred cluster assignments
when an algorithm under- and over-clusters, respectively. For comparison, we also show an example of
definitions for (B) true positives, (C) true negatives, (D) false positives, and (E) false negatives used

by confusion matrix-based metrics.
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Figure S3. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated
datasets using the adjusted Rand index (ARI). Each simulated dataset had five replicates and
consisted of 1, 5, and 10 groups with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The
two recall copula algorithms scaled exponentially with the number of cells and were not able to be

completed when N = 50K cells.
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Figure S5. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated
datasets using homogeneity. Each simulated dataset had five replicates and consisted of 1, 5, and 10
groups with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The two recall copula algorithms
scaled exponentially with the number of cells and were not able to be completed when N = 50K cells.
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with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The two recall copula algorithms scaled
exponentially with the number of cells and were not able to be completed when N = 50K cells.
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Figure S10. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated
datasets with rare cell types evaluated by the number of clusters detected. Each simulated
dataset had five replicates and consisted of five or ten cell types with varying sample sizes of N = 5K
and 10K cells. For each simulation, one cell type was chosen to be the rare cell type and was allocated
approximately 1% of all simulated cells. Each remaining cell type was sampled with approximately equal
proportions. The rare cell type was then simulated with 0.01, 0.02, 0.05, and 0.1 as its proportion of
differentially expressed genes, while the remaining cell types were simulated with 0.1 as their proportion
of differentially expressed genes. The correct number of cells is denoted by the dashed line. Perfect
performance is when a given bar is touching the dashed line. The point of this analysis is to identify the
threshold at which each method will no longer be able to detect the rare cell type.
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Figure S11. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated
datasets with rare cell types evaluated by adjusted Rand index (ARI). Each simulated dataset
had five replicates and consisted of five or ten cell types with varying sample sizes of N = 5K and
10K cells. For each simulation, one cell type was chosen to be the rare cell type and was allocated
approximately 1% of all simulated cells. Each remaining cell type was sampled with approximately equal
proportions. The rare cell type was then simulated with 0.01, 0.02, 0.05, and 0.1 as its proportion of
differentially expressed genes, while the remaining cell types were simulated with 0.1 as their proportion
of differentially expressed genes. The ARI is shown on the y-axis and perfect performance is 1.0. The
point of this analysis is to identify the threshold at which each method will no longer be able to detect
the rare cell type.
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Figure S12. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated
datasets with rare cell types evaluated by V-measure. FEach simulated dataset had five replicates
and consisted of five or ten cell types with varying sample sizes of N = 5K and 10K cells. For each
simulation, one cell type was chosen to be the rare cell type and was allocated approximately 1% of all
simulated cells. Each remaining cell type was sampled with approximately equal proportions. The rare
cell type was then simulated with 0.01, 0.02, 0.05, and 0.1 as its proportion of differentially expressed
genes, while the remaining cell types were simulated with 0.1 as their proportion of differentially expressed
genes. The V-measure is shown on the y-axis and perfect performance is 1.0. The point of this analysis
is to identify the threshold at which each method will no longer be able to detect the rare cell type.
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Figure S13. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated
datasets with rare cell types evaluated by the number of clusters detected. Each simulated
dataset had five replicates and consisted of 5 or 10 cell types with varying sample sizes of N = 5K and
10K cells. Each cell type was sampled with approximately equal proportions. For each simulation, one
cell type was chosen to be the rare cell type. This cell type was then downsampled to 100, 150, and
200 cells (unless that involved going beyond the original number of cells for that cell type). The correct
number of cells is denoted by the dashed line. Perfect performance is when a given bar is touching the
dashed line. The point of this analysis is to identify the threshold at which each method will no longer
be able to detect the rare cell type.
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Figure S14. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated
datasets with rare cell types evaluated by adjusted Rand index (ARI). Each simulated dataset
had five replicates and consisted of 5 or 10 cell types with varying sample sizes of N = 5K and 10K
cells. Each cell type was sampled with approximately equal proportions. For each simulation, one cell
type was chosen to be the rare cell type. This cell type was then downsampled to 100, 150, and 200 cells
(unless that involved going beyond the original number of cells for that cell type). The ARI is shown on
the y-axis and perfect performance is 1.0. The point of this analysis is to identify the threshold at which
each method will no longer be able to detect the rare cell type.



21

10 Groups

w o o -

1.001

MS=N

Method

recall
— 8c-SHC

CHOIR

scice

o
@
S

0.951
0.901
0851
0801
0o ' v 200

Number of Cells in Downsampled Cluster

V-measure
2
8

MOL=N

Figure S15. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated
datasets with rare cell types evaluated by V-measure. FEach simulated dataset had five replicates
and consisted of 5 or 10 cell types with varying sample sizes of N = 5K and 10K cells. Each cell type
was sampled with approximately equal proportions. For each simulation, one cell type was chosen to be
the rare cell type. This cell type was then downsampled to 100, 150, and 200 cells (unless that involved
going beyond the original number of cells for that cell type). The V-measure is shown on the y-axis and
perfect performance is 1.0. The point of this analysis is to identify the threshold at which each method
will no longer be able to detect the rare cell type.
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Figure S22. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the aorta tissue from the Tabula Muris
study.
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Figure S23. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the bladder tissue from the Tabula
Muris study.
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Figure S24. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the Brain myeloid tissue from the
Tabula Muris study.
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Figure S25. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the Brain non-myeloid tissue from the
Tabula Muris study.
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Figure S26. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the diaphragm tissue from the Tabula
Muris study.
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Figure S27. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the fat tissue from the Tabula Muris
study:.
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Figure S28. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the heart tissue from the Tabula Muris

study.
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Figure S29. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the kidney tissue from the Tabula

Muris study.
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Figure S30. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the large intestine tissue from the
Tabula Muris study.
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Figure S31. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the limb muscle tissue from the Tabula
Muris study.
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Figure S32. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the liver tissue from the Tabula Muris
study.
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Figure S33. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the lung tissue from the Tabula Muris
study.
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Figure S34. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the mammary gland tissue from the

Tabula Muris study.
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Figure S35. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the bone marrow tissue from the
Tabula Muris study.
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Figure S36. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the pancreas tissue from the Tabula
Muris study.
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Figure S37. Uniform manifold approximation and projection (UMAP) plots illustrating the
manually curated cell ontology class labels compared to the inferred clustering results for
recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the skin tissue from the Tabula Muris

study.
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Figure S38. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the spleen tissue from the Tabula

Muris study.
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Figure S39. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the thymus tissue from the Tabula

Muris study.
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Figure S40. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the tongue tissue from the Tabula
Muris study.
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Figure S41. Uniform manifold approximation and projection (UMAP) plots illustrating
the manually curated cell ontology class labels compared to the inferred clustering results
for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the trachea tissue from the Tabula
Muris study.
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Figure S42. Performance comparison of recall, sc-SHC,CHOIR and scAce showing the per-
centage of tissues in the Tabula Muris dataset where the number of clusters inferred by
each method matched the exact number curated cell type groups in the study. Here, recall
matched the correct number of clusters in 3 tissues (aorta, diaphragm, and limb muscle), sc-SHC matched
the correct number of clusters in 1 tissue (mammary gland), while CHOIR and scAce both matched the
correct number of clusters in 0 tissues.
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Figure S43. Simulation of rare cell type detection in Tabula Muris tissues. (a) Uniform
manifold approximation and projection (UMAP) plot showing the limb muscle tissue cells before any
downsampling was performed. The circled cell type, macrophages, were selected to be downsampled
because they were the cell type with the fewest number of cells (31). (B) UMAP plot showing the limb
muscle tissue cells after downsampling was performed on the circled cell type, macrophages. This cell type
was downsampled to 5, 10, 15, 25, and 30 cells and analyzed by each clustering method. Depicted here is
a UMAP with 5 macrophages. (C) The number of clusters detected by each method on the downsampled
limb muscle datasets. Perfect performance is when a given bar is touching the dashed line. The point
of this analysis is to identify the threshold at which each method will no longer be able to detect the
macrophages. For recall this threshold was 20 cells and for sc-SHC this threshold was 25 cells. CHOIR
and scAce sometimes found more clusters after downsampling. (D) UMAP plot showing the diaphragm
tissue cells before any downsampling was performed. The circled cell type, T cells, were selected to be
downsampled because they were the cell type with the fewest number of cells (35). (E) UMAP plot
showing the diaphragm tissue cells after downsampling was performed on the circled cell type, T cells.
This cell type was downsampled to 5, 10, 15, 25, and 30 cells and analyzed by each clustering method.
Depicted here is a UMAP with 5 T cells. (F) The number of clusters detected by each method on the
downsampled diaphragm datasets. Perfect performance is when a given bar is touching the dashed line.
The point of this analysis is to identify the threshold at which each method will no longer be able to
detect the T cells. For recall this threshold was 20 cells (although recall also did not detect the T
cell cluster with 25 cells). sc-SHC, CHOIR, and scAce sometimes found more clusters after downsampling.
and sometimes found two clusters less than they started with.
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Figure S44. (Continued on the following page).
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Figure S44. Differential expression results for recall+ZIP compared to countsplit and
ClusterDE, which provide calibrated statistical tests for double-dipping. (A) Uniform mani-
fold approximation and projection (UMAP) plots of the manually curated cell ontology class labels, the
default clusters from Seurat (used by ClusterDE), the cluster labels obtained by recall+ZIP, and the
cluster labels obtained by countsplit. (B) Scatter plot and corresponding Pearson correlation coeffi-
cient (r) of the -log;,P-values for all genes being tested for differential expression between countsplit
clusters 0 and 1 and for recall+ZIP clusters 0 and 1 (both pairs correspond to skeletal muscle satellite
cells and mesenchymal stem cells, respectively). (C) Scatter plot and corresponding Pearson correlation
coefficient (r) of the -log,yg-values for all genes being tested for differential expression by ClusterDE
between default Seurat clusters 0 and 1 and the -log,,P-values for recall+ZIP clusters 0 and 1 (both
pairs correspond to skeletal muscle satellite cells and mesenchymal stem cells, respectively). (D) Scatter
plot and corresponding Pearson correlation coefficient (r) of the -log,,P-values for all genes being tested
for differential expression between countsplit clusters 0 and 1 and for recall+ZIP clusters 0 and 1.
Here, the recall+ZIP clusters had been downsampled such that they were of equal size to the clusters
used in countsplit (both pairs correspond to skeletal muscle satellite cells and mesenchymal stem cells,
respectively). Notice that the y = x line in this comparison better aligns with both algorithms, indicating
that any additional significance seen in the -log;,P-values from recall+ZIP in panel B is likely due to
the increased sample size of each cluster. This also means that the P-values obtained by testing for
differential expression with recall+ZIP closely match what would be seen if the cell types were known
a priori. This is because the recall+ZIP clusters align better the curated labels in panel A. (E) Venn
diagram displaying the overlap of statistically significant marker genes found between the comparisons
made in (B) and (C). ClusterDE tests at a false discovery rate (FDR) of 0.05, while recall+ZIP and
countsplit utilize a more strict Bonferroni correction threshold.
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Figure S45. Performance comparison of recall, clusterDE, and countsplit to detect truly
differentially expressed genes on simulated datasets with two cell types. Each simulated
dataset had five replicates and consisted of N = 1K cells and G = 1K genes. We considered three
different scenarios where we split the cells into 90/10, 70/30, and 50/50 groups of two. The y-axis labels
represent the percentage of the less dominant group. Each cell type was simulated such that it had 0.1,
0.2, 0.3, 0.4, and 0.5 proportion of its total genes be differentially expressed. Shown are the precision,
recall (sensitivity), and F1 score for each method. Perfect performance is 1.0 for each metric. When the
proportion of differentially expressed genes was low, the FindClusters function in Seurat would often
over-cluster when paired with countsplit.
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Figure S46. Average runtime comparison of recall+ZIP, sc-SHC, CHOIR, and scAce in four
additional single-cell studies of varying sizes. Each method was run on a machine with 16 cores.
The datasets analyzed include (A) the PBMC 3K (N = 2,700 cells), (B) the human liver data from
MacParland et al. [9] (N = 8,444 cells), and (C, D) the SeuratData bone marrow datasets (N = 30,672
and N = 40,000 cells, respectively). We run each method on each dataset 5 times; depicted in each bar
plot is the mean + the standard deviation across all runs.
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Figure S47. Comparison of peak memory usage (in gigabytes; GB) for recall+ZIP, sc-SHC,
CHOIR, and scAce on four additional single-cell studies of varying sizes. Each method was run
on a machine with 16 cores. The datasets analyzed include (A) the PBMC 3K (N = 2,700 cells), (B)
the human liver data from MacParland et al. [9] (N = 8,444 cells), and (C, D) the SeuratData bone
marrow datasets (N = 30,672 and N = 40,000 cells, respectively). We run each method on each dataset
5 times; depicted in each bar plot is the mean + the standard deviation across all runs.
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Figure S48. Average runtime comparison of recall+ZIP, sc-SHC, CHOIR, and scAce as a
function of the number of cells in a study. Here, we take subsets of the 68,579 total peripheral
blood mononuclear cells (PBMCs) provided by Zheng et al. [10] which included smaller datasets of size
1K, 2K, 5K, 10K, 20K, 30K, 40K, 50K, and 60K cells. Each method was run on a machine with 16 cores.
We run each method on each dataset 5 times; depicted are the mean 4 the standard deviation across all
runs.
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Figure S49. Comparison of peak memory usage (in gigabytes; GB) for recall+ZIP, sc-SHC,
CHOIR, and scAce as a function of the number of cells in a study. Here, we take subsets of the
68,579 total peripheral blood mononuclear cells (PBMCs) provided by Zheng et al. [10] which included
smaller datasets of size 1K, 2K, 5K, 10K, 20K, 30K, 40K, 50K, and 60K cells. Each method was run on
a machine with 16 cores. We run each method on each dataset 5 times; depicted are the mean =+ the
standard deviation across all runs.



195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

o7

References

1.

José E. Chacén and Ana I. Rastrojo. Minimum adjusted rand index for two clusterings of a given
size. Advances in Data Analysis and Classification, 17(1):125-133, Mar 2023. ISSN 1862-5355. doi:
10.1007/s11634-022-00491-w. URL https://doi.org/10.1007/s11634-022-00491-w.

. William M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the

American Statistical Association, 66(336):846-850, 1971. ISSN 01621459. URL http://www.jsto
r.org/stable/2284239.

. E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical clusterings. Journal

of the American Statistical Association, 78(383):553-569, 1983. doi: 10.1080/01621459.1983.1047
8008. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10478008.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external cluster
evaluation measure. In Jason Eisner, editor, Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 410420, Prague, Czech Republic, June 2007. Association for Computa-
tional Linguistics. URL https://aclanthology.org/D07-1043.

. Lijia Yu, Yue Cao, Jean Y. H. Yang, and Pengyi Yang. Benchmarking clustering algorithms on

estimating the number of cell types from single-cell rna-sequencing data. Genome Biology, 23(1):
49, Feb 2022. ISSN 1474-760X. doi: 10.1186/s13059-022-02622-0. URL https://doi.org/10.1
186/s13059-022-02622-0.

. Norman Lloyd. Johnson, Samuel. Kotz, and Adrienne W. Kemp. Univariate discrete distributions.

Wiley series in probability and mathematical statistics. Probability and mathematical statistics.
John Wiley & Sons, New York, 2nd ed. edition, 1992. ISBN 0471548979. Includes bibliographical
references (p. 473-547) and index.

Stefanie Dencks, Marion Piepenbrock, and Georg Schmitz. Assessing vessel reconstruction in
ultrasound localization microscopy by maximum likelihood estimation of a zero-inflated poisson
model. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(8):1603-1612,
2020. doi: 10.1109/TUFFC.2020.2980063.

. Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck III, Shiwei Zheng, Andrew

Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zagar, Paul Hoffman, Marlon
Stoeckius, Efthymia Papalexi, Eleni P. Mimitou, Jaison Jain, Avi Srivastava, Tim Stuart, Lamar B.
Fleming, Bertrand Yeung, Angela J. Rogers, Juliana M. McElrath, Catherine A. Blish, Raphael
Gottardo, Peter Smibert, and Rahul Satija. Integrated analysis of multimodal single-cell data. Cell,
2021. doi: 10.1016/j.cell.2021.04.048. URL https://doi.org/10.1016/j.cell.2021.04.048.

. Sonya A. MacParland, Jeff C. Liu, Xue-Zhong Ma, Brendan T. Innes, Agata M. Bartczak, Blair K.

Gage, Justin Manuel, Nicholas Khuu, Juan Echeverri, Ivan Linares, Rahul Gupta, Michael L.
Cheng, Lewis Y. Liu, Damra Camat, Sai W. Chung, Rebecca K. Seliga, Zigong Shao, Elizabeth
Lee, Shinichiro Ogawa, Mina Ogawa, Michael D. Wilson, Jason E. Fish, Markus Selzner, Anand
Ghanekar, David Grant, Paul Greig, Gonzalo Sapisochin, Nazia Selzner, Neil Winegarden, Oyedele
Adeyi, Gordon Keller, Gary D. Bader, and Tan D. McGilvray. Single cell rna sequencing of human
liver reveals distinct intrahepatic macrophage populations. Nature Communications, 9(1):4383,
Oct 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-06318-7. URL https://doi.org/10.1038/
s41467-018-06318-7.



58

237 10. Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, Ryan

238 Wilson, Solongo B. Ziraldo, Tobias D. Wheeler, Geoftf P. McDermott, Junjie Zhu, Mark T. Gregory,
239 Joe Shuga, Luz Montesclaros, Jason G. Underwood, Donald A. Masquelier, Stefanie Y. Nishimura,
240 Michael Schnall-Levin, Paul W. Wyatt, Christopher M. Hindson, Rajiv Bharadwaj, Alexander
201 Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg, Christopher McFarland, Keith R. Loeb,
22 William J. Valente, Nolan G. Ericson, Emily A. Stevens, Jerald P. Radich, Tarjei S. Mikkelsen,
23 Benjamin J. Hindson, and Jason H. Bielas. Massively parallel digital transcriptional profiling of
244 single cells. Nature Commaunications, 8(1):14049, Jan 2017. ISSN 2041-1723. doi: 10.1038/ncom

25 ms14049. URL https://doi.org/10.1038/ncomms14049.



