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ARTICLE

Artificial variables help to avoid
over-clustering in single-cell RNA sequencing

Alan DenAdel,1 Michelle L. Ramseier,2,3,4,5,6 Andrew W. Navia,3 Alex K. Shalek,2,3,4,5,6

Srivatsan Raghavan,3,7,8,9,11 Peter S. Winter,3,11 Ava P. Amini,10,11 and Lorin Crawford10,11,*
Summary
Standard single-cell RNA sequencing (scRNA-seq) pipelines nearly always include unsupervised clustering as a key step in identifying

biologically distinct cell types. A follow-up step in these pipelines is to test for differential expression between the identified clusters.

When algorithms over-cluster, downstream analyses can produce misleading results. In this work, we present ‘‘recall’’ (calibrated clus-

tering with artificial variables), a method for protecting against over-clustering by controlling for the impact of reusing the same data

twice when performing differential expression analysis, commonly known as ‘‘double dipping.’’ Importantly, our approach can be

applied to a wide range of clustering algorithms. Using real and simulated data, we show that recall provides state-of-the-art clustering

performance and can rapidly analyze large-scale scRNA-seq studies, even on a personal laptop.
Introduction

Recent advances in single-cell RNA sequencing (scRNA-

seq) technologies have enabled the generation of datasets

that contain the transcriptomic profiles of thousands to

millions of individual cells.1,2 Unless an additional assay

is paired with sequencing (e.g., cellular indexing of tran-

scriptomes and epitopes, known as CITE-seq3), cell type la-

bels are not provided with the corresponding transcrip-

tomic profiles. This has led to many scRNA-seq

bioinformatic pipelines requiring both (1) clustering to

identify putative cell types based on shared gene expres-

sion covariation and (2) differential gene expression anal-

ysis between cells in each cluster to identify ‘‘marker

genes’’ uniquely expressed by each putative cell type. The

most commonly used software packages, such as Seurat4

and Scanpy,5 perform these two steps on the same dataset.

This double use of data is often referred to as ‘‘circular anal-

ysis’’ or ‘‘double dipping’’ and is known to result in highly

inflated p values, even in the null case when gene expres-

sion is identically distributed and there are no true group-

ings that distinguish cell populations.6,7 The miscalibrated

test statistics produced by circular analyses make it chal-

lenging to assess whether the genes found to be differen-

tially expressed between two putative cell groups are

‘‘real’’ or solely identified due to chance based on the

way cells are partitioned by the clustering algorithm being

used. Importantly, simple solutions, such as sample split-

ting between cells, do not appropriately correct for this

type of post-selective inference.7
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Several methods have been recently developed to correct

for post-selective inference after clustering. These methods

include (1) an approximate test based on truncated normal

distributions,8 (2) a data splitting strategy that splits data at

the level of individual gene counts,7 and (3) using syn-

thetic null variables called knockoffs to calibrate hypothe-

sis testing.6 The point of each of these methods is to

identify an appropriate hypothesis testing significance

threshold to account for the statistical inflation that occurs

due to the double use of data. However, none of these tests

inform if (or how) the re-clustering of cells should be done.

They simply return a list of calibrated p values. As a result,

approaches for protecting against over-clustering have

recently been proposed, including ‘‘single-cell significance

of hierarchical clustering’’ (sc-SHC),9 ‘‘clustering hierarchy

optimization by iterative random forests’’ (CHOIR),10 and

an ‘‘adaptive embedding and clustering method’’ using

variational autoencoders (scAce).11

In this work, we take inspiration from the use of negative

control knockoff variables for calibrated statistical tests12,13

and introduce ‘‘recall,’’ a method for performing calibrated

clustering with artificial variables in single-cell datasets.

The ultimate goal of recall is toprovideuserswith the correct

number of clusters. The rationale is that when clusters are

correctly inferred, the effect of double dipping on down-

stream tasks (e.g., differential expression analyses) is mini-

mal.Our approachcanbepairedwithanyexistingclustering

algorithm that has a hyperparameter for tuning the number

of clusters andmakesnostrongassumptions about the input

data.We statisticallymotivate the need for an algorithm like
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Figure 1. Overview of the recall algorithm and examples of results from different clustering approaches on simple simulated data-
sets
(A) Schematic of the clustering workflow with the recall approach.
(B) Demonstration of the traditional clustering framework versus the alternative using recall for simulated data with one known group.
Images left to right show the true labels, clusters found using the Louvain algorithm with default parameter settings in Seurat, and the
clusters found using the same Louvain algorithm paired with recall.

(legend continued on next page)
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recall, evaluate its utility against other recently proposed

clustering correction methods, and demonstrate its ability

to efficiently scale to large-scale scRNA-seq studies.
Material and methods

Overview of the recall algorithm
Consider a study with scRNA-seq expression data for i ¼ 1;.;N

cells that each have measurements for j ¼ 1;.;G genes. Let this

dataset be represented by an N3G matrix X where the column-

vector xj denotes the expression profile for the j-th gene. The recall

method augments the real expression matrix with artificial null

genes, which are generated to have no association with any partic-

ular cell type.12,13 These negative control variables go through the

same preprocessing, clustering, and differential expression ana-

lyses as the real observed genes in the study; therefore, they are

presented with the same opportunity to be identified as marker

genes. Since the artificial null genes are essentially noise variables,

the distribution of their test statistics represents the impact of

post-selective inference (i.e., deviations from the null). As a result,

we can correct for these same deviations from the null in the

observed test statistics for the real genes, which allows us to also

calibrate our cluster assignments. This process is akin to imple-

menting a ‘‘knockoff filter’’ (which controls the false discovery

rate) when testing for differentially expressed genes between clus-

ters.12,13 If there are no detectable differences between the inferred

clusters, we assume that over-clustering has occurred and re-clus-

ter with a smaller number of groups. More specifically, recall works

by implementing the following steps (Figure 1A).

(1) For each gene in the study xj, generate an artificial null

expression vector ~xj. Next, concatenate all of the synthetic

genes together and construct a matrix of artificial null vari-

ables ~X ¼ ½~x1;.; ~xG�.
(2) Combine the real gene expression matrix with the artificial

null features into a single object X� ¼ ½X; ~X�. Then,

perform the usual preprocessing on the augmented data

matrix X�. In this paper, preprocessing consists of normal-

izing the expression counts followed by principal-compo-

nent analysis (PCA).

(3) Apply a given clustering algorithm (e.g., the Louvain

algorithm) to the PCA embeddings of the augmented ma-

trix X� (or, alternatively, apply the clustering algorithm

to the augmented matrix directly).

(4) Conduct differential expression analysis between each k-th

and l-th cluster pair, denoted by Ck and Cl, respectively.

Obtain p values for all genes (real and artificial nulls) across

each comparison.

(5) Let pjðk; lÞ represent the p value for the j-th real gene when

comparing differential expression between clusters Ck and
(C) Bar chart showing the number of clusters detected by the Seurat de
incorrectly found4–7clusters ineachsimulation,while recall correctly r
(D) Demonstration of the traditional clustering framework versus t
groups. Images left to right show the true labels, clusters found using
and the clusters found using the same Louvain algorithm paired wit
(E) Bar chart showing the number of clusters detected by the Seurat de
incorrectly found 4 clusters in each simulation, while recall correctly re
(F) Performance comparison of recall, sc-SHC, CHOIR, and scAce on s
replicates and consisted of 1, 5, and 10 groups with varying sample s
copula algorithms scaled exponentially with the number of cells and
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Cl. Similarly, let ~pjðk; lÞ represent the p value for the same

comparison but for the corresponding j-th artificial null

gene. We use these two p values to compute the following

test statistic (or contrast score)6,12:

Wjðk; lÞ ¼ � log pjðk; lÞ �
h
� log ~pjðk; lÞ

i
: (Equation 1)

Intuitively, a large, positive value of Wjðk; lÞ represents evidence
that the j-th gene is truly different between clusters Ck andCl, while

a value less than or equal to zero represents strong evidence that

there is no difference in the expression of the j-th gene between

the groups. To compute the test statistics Wjðk; lÞ for each cluster

in Equation 1, recall uses p values pjðk; lÞ and ~pjðk; lÞ from the Wil-

coxon rank-sum test as implemented by the FindMarkers function

in the Seurat software package4 and accelerated by Presto.14

(6) Next, compute the data-dependent threshold (inspired by

the knockoffþ method proposed by Barber and Candès12)

via the following formulation:

tðk; lÞ ¼ min

�
t > 0 :

1þ#
�
j : Wjðk; lÞ% � t

�
max

�
#
�
j : Wjðk; lÞR t

�
;1

� % q

�
;

(Equation 2)

where #f ,g denotes the cardinality of a set and q is a hyperpara-

meter (in the knockoff framework, q represents the desired false

discovery rate). By default and for all results presented in this pa-

per, recall sets q ¼ 0:05. If no such t > 0 exists, we set tðk;lÞ ¼ N.

If, for any pair of clusters, tðk; lÞ ¼ N, then we return to step 3

and rerun the clustering algorithm with a smaller number of clus-

ters. However, if tðk; lÞ < N for all pairs of clusters, then we see no

evidence of over-clustering and return the inferred cluster assign-

ments to the user.

The recall software package allows users to simulate artificial vari-

ables fromdifferent classes of null distributions. In themain text, we

primarily focus on using a zero-inflated Poisson distribution to

generate independent synthetic genes (recallþZIP). Additional

choices that we also consider include generating (1) independent

artificial genes via a negative binomial distribution (recallþNB), (2)

correlated Poisson-distributed artificial genes via a Gaussian copula

(recallþPoisson-copula), (3) correlatedNB-distributedartificial genes

via a Gaussian copula (recallþNB-copula), and (4) artificial genes

drawn using the count splitting method (recallþcountsplit).7 We

describe how eachof these null distributions is implementedwithin

the recall algorithm and software package in the next section.
Construction of artificial null genes
There has been a large body ofwork focused on choosing the correct

distributions for modeling scRNA-seq count data.15–18 To construct

artificial null genes that ‘‘match’’ the distribution of expression for

theoriginal real genes (butwithoutbeing associatedwithanypartic-

ular cell types), we use several approaches, which we detail below.
fault and recall when there is a single true group. The Seurat default
eturneda single cluster. Theerrorbarsdenote the standarddeviation.
he alternative using recall for simulated data with three known
the Louvain algorithm with default parameter settings in Seurat,

h recall.
fault and recall when there are three true groups. The Seurat default
turned three clusters. The error bars denote the standard deviation.
imulated datasets usingV-measure. Each simulated dataset had five
izes of N ¼ 5,000, 10,000, 25,000, and 50,000 cells. The two recall
were not able to be completed when N ¼ 50,000 cells.
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Independent ZIP distribution

To construct artificial null genes that match the distribution of

expression for the original real genes (but without being associated

with any particular cell types), the recall software gives users the

choice to implement a univariate parametric modeling approach,

which can be applied to each individual gene separately. By

default, the algorithm utilizes the ZIP model. Importantly, this

parametric generative method creates artificial null gene variables

that (1) do not have any association with any particular cell group

and (2) do not retain any covariance structure with the original

real genes (i.e., the null genes are also independently distributed).

The ZIP model mixes two generative processes—the first generates

zeros and the second is governed by a Poisson distribution that

generates counts (some of whichmay also be zero).19 For a random

variable X � ZIPðp0;lÞ, we have the following mixture:

Pr½X ¼ 0� ¼ p0 þð1 � p0Þ exp f� lg;

Pr½X ¼ x� ¼ ð1 � p0Þ l
x exp f� lg

x!
;

(Equation 3)

where x˛Nþ is any non-negative integer value, l is the expected

count from the Poisson distribution (i.e., the rate parameter), and

p0 is the proportion of extra zeroes arising in addition to those

from the underlying Poisson distribution. Themaximum likelihood

estimators for the ZIP model, given the expression of the j-th gene,

take the following form19 (see Note S1 for full derivation):

bl j ¼ W0

�� qj exp
�� qj

��þ qj; bp0j ¼ 1 � xjbl j

; (Equation 4)

where qj ¼ xj=ð1 � r0jÞ represents the sample mean of non-zero

counts, r0j ¼
P

iIðxij ¼ 0Þ=N denotes the proportion of observed

zeroes for the j-th gene across all cells (with Ið ,Þ being an indicator

function), xj is the sample average expression for the j-th gene of

interest, and W0 is the principal branch of the Lambert W func-

tion (i.e., W0ðaÞ ¼ b implies b exp fbg ¼ a). For each j-th real

gene xj, we fit the maximum likelihood estimators bp0j and blj
and then sample the synthetic expression for the corresponding

artificial null gene as ~xj � ZIPðbp0j;bljÞ.
Independent NB distribution

As an alternative univariate approach, the recall software also gen-

erates independently distributed artificial null genes from a NB

model. Briefly, the NB distribution has a probability mass function

Pr½X ¼ k� ¼
�
kþ r þ 1

k

	
ð1 � pÞkpr ; (Equation 5)

with the parameter r ˛N representing the number of successes, p˛
½0;1� as the probability of success in each experiment, and k˛ N0 as

an integer denoting the number of failures. When both r and p are

unknown, there is no analytic solution via maximum likelihood

equations. As a result, the recall software estimates the model pa-

rameters using the Nelder-Mead algorithm, which is implemented

via fitdistr under the MASS R package.20 When a gene expression

vector has a large number of zeroes, the Nelder-Mead algorithm

can be unstable. In this scenario, recall will call the fitdist function

from the fitdistrplus R package as an attempt to numerically find

maximum likelihood estimates for r and p.21 If this also fails, then

the software will estimate r and p via a method of moments.

Following this parameter estimation step, the synthetic expression

for artificial null genes is sampled as ~xj � NBðbr j;bpjÞ.
Correlated Poisson and NB distributions

To generate correlated artificial null genes where each genemargin-

ally follows either a Poisson or NB distribution, recall uses a

Gaussian copula as implemented in scDesign3.22 Copulas are a
The Ame
generalization of inverse transform sampling. Here, the goal is to

generate features from any arbitrary distribution by first randomly

sampling from a uniform distribution and then transforming those

draws via the inverse cumulative distribution function of the distri-

bution of interest. Copulas model the dependence between uni-

form random variables by applying the probability integral trans-

form to the data. The Gaussian copula is a specific family of

distributions over ½0;1�G, where G is the number of artificial null

features defined by using the probability integral transform on a

multivariate normal distribution of dimension G. For the recall re-

sults in the main text, scDesign3 was used to generate correlated

count data with either a Poisson or NBmarginal distribution where

the artificial null genes were assumed to come from a single group.

Countsplit

Countsplit is a method for generating independent train and test

splits for a dataset.7 Again, let N be the number of cells and G the

number of genes in a dataset denoted by X. For context, two com-

mon approaches inmodel validation are (1) sample splitting and (2)

feature splitting. Sample splitting takes an N3J matrix and samples

twomatrices of dimensionsN13G andN23G (whereN1 is the num-

ber of samples in one split and N2 is the number of samples in the

other). Feature splitting, on the other hand, takes an N3J matrix

and creates two matrices that are N3G1 and N3G2 (where G1 is

the number of features in one split and G2 is the number of features

in the other). In contrast to these common approaches, countsplit

takes an N3G matrix and samples two matrices that are both of

dimension N3 G. For data that are assumed to be Poisson distrib-

uted, countsplit is performed on a data matrix as follows:

xtrainij � binomial
�
xij; e

�
; (Equation 6)

where Xtrain ¼ ½xtrain
1 ; .; xtrain

G �, Xtest ¼ X � Xtrain, and

0 < e < 1. Here, we use the default value of e ¼ 0:5. The key

result for countsplit is that if the data are Poisson distributed,

then Xtest is independent of Xtrain. The recallþcountsplit algo-

rithm is implemented via the following steps.

(1) Sample Xtest and Xtrain from the counts matrix of genes X.

(2) Perform the usual preprocessing on Xtrain. In this paper,

preprocessing consists of normalizing the expression

counts followed by PCA.

(3) Apply a given clustering algorithm (e.g., the Louvain algo-

rithm) to the PCA embeddings of the augmented matrix

Xtrain (or, alternatively, apply the clustering algorithm to

the augmented matrix directly).

(4) Conduct differential expression analysis between each k-th

and l-th cluster pair, denoted by Ck and Cl, respectively.

Obtain p values for all genes (real and artificial nulls) across

each comparison.

If, for any pair of clusters, there are no statistically significant

genes after the Bonferroni correction, then we return to step 3

and rerun the clustering algorithm with a smaller number of clus-

ters. However, if all pairs of clusters have statistically significant

genes in the test set after Bonferroni correction, then the inferred

cluster assignments are returned to the user.
Parameters for the recall algorithm
Thedefault starting resolutionparameter for theLouvain andLeiden

algorithms within recall is g ¼ 0:8, the same as the default in the

FindClusters function in Seurat. Note that the optimal resolution

parameter bg is estimated using the combined data frame with both
rican Journal of Human Genetics 112, 940–951, April 3, 2025 943



the real gene expressionmatrix and the artificial null variablesX� ¼
½X; ~X�. Once this parameter is estimated, recall doesnot performany

re-clustering on just the original gene expressionX (see rationale in

Note S2 and Figure S1). Since recall works by iteratively reducing the

startingnumberof clusters, if the starting resolutionparameter is too

low (i.e., if you start with correctly calibrated clusters or under-clus-

ter), then there is no opportunity for recall to iteratively reduce the

number of clusters. There is a warning produced by the recall soft-

warewhen this occurs, and users can rerun recall with a new param-

eter to begin with a larger number of clusters.
Simulation studies
For simple proof-of-concept experiments, we simulated scRNA-seq

data using the splatter R package,23 which implements a gamma-

Poisson model to create a count matrix for cells. In this study,

the one-group dataset was simulated with G ¼ 1,000 genes and

N ¼ 1,000 cells, while the three-group dataset was simulated to

have 1,000 genes and 4,000 cells, with the three groups being sepa-

rated in proportions of 0.6, 0.2, and 0.2, respectively. Differential

gene expression between the groups was controlled using the de.-

prob parameter with a value of 0.05. For the more comprehensive

benchmarking experiments where we compare recall to sc-SHC,9

CHOIR,10 and scAce,11 we additionally simulated five replicates of

datasets with 1, 5, and 10 groups each of varying sample sizes in

the range N ¼ 5,000, 10,000, 25,000, and 50,000 cells. The group

proportions were drawn from a Dirichlet distribution with concen-

tration parameter a ¼ ð1;1;.;1Þ. Here, each dataset was simulated

withG ¼5,000genes, andeachwasgivena10%probabilityof being

differentially expressedbetweengroups.Aspartof these simulations,

we also include an additional study in which we assess the ability to

detect rare cell types. Here, we examine two cases where we

(1) vary the number of marker genes while holding the num-

ber of rare cells constant and

(2) vary the number of rare cells while holding the proportion

of marker genes constant.

In the first scenario, the number of rare cells is fixed at approx-

imately 1% of all simulated cells, while the other ‘‘common’’ cell

types are sampled with approximately equal proportions. The

rare cells are simulated such that 0.01, 0.02, 0.05, and 0.1 propor-

tion of their genes are differentially expressed; the other cell types

were simulated such that a proportion of 0.1 of their genes is

differentially expressed. In the second scenario, each cell type is

simulated to have the same fixed proportion of differentially ex-

pressed genes. The number of rare cells varied as we downsampled

the group size to contain 100, 150, and 200 cells. All rare cell type

simulations were conducted withG ¼ 1,000 genes andN ¼ 5,000

and 10,000 cells.

In order to quantitatively benchmark the performance of recall,

countsplit,7 and ClusterDE6 on marker gene detection, we

repeated simulation 2 above with only two cell types. Using

only two cell types simplified this particular analysis and made it

straightforward to assess different parameters that would affect

method performance. Specifically, we ran the three approaches us-

ing the following procedures.

d To run recall: cells were clustered using recall, and then the

FindMarkers function in Seurat was used on the resulting

cluster pairs (if there were any) to identify differentially ex-

pressed genes.
944 The American Journal of Human Genetics 112, 940–951, April 3,
d To run ClusterDE: cells were clustered using the FindClusters

function in Seurat, and then ClusterDE was used on the re-

sulting cluster pairs (if there were any) to identify differen-

tially expressed genes.

d To run countsplit: the countsplit training cells were clustered

using the FindClusters function in Seurat, and then the

FindMarkers function in Seurat was used on the countsplit

test cells for each cluster pair (if there were any) to identify

differentially expressed genes.

Any genes identified between a pair of clusters were considered

‘‘findings’’ by a particular method—this was to account for the fact

that a given clustering algorithm may have over-clustered. In this

scenario, under-clustering would result in only 1 cluster, and no

marker genes are identified. Each simulated dataset had five repli-

cates and consisted of N ¼ 1,000 cells and G ¼ 1,000 genes. We

considered three different scenarios where we split the cells into

90/10, 70/30, and 50/50 groups of two. Each cell type was simu-

lated to have 0.1, 0.2, 0.3, 0.4, and 0.5 proportions of its total

genes differentially expressed. We simulated each combination

of parameters five times. Performance was quantified using preci-

sion, recall (sensitivity), and the F1 score.
Data overview
Below, we briefly describe all of the datasets used in this work. All

datasets outside of the Tabula Muris were used exclusively to test

the scalability of recall and competing methods; therefore, clus-

tering performance was not recorded. All preprocessing steps

were done using the Seurat software package. For each of these da-

tasets, the count matrices were log normalized using the

NormalizeData function with the default parameters. Here, we

set the scale factor ¼ 10,000. The number of variable genes was

set to 1,000 for all analyses. This was determined by using the

vst selection method implemented by the FindVariableFeatures

function. All data were centered and scaled using the ScaleData

function with default parameters, principal components were

computed with the RunPCA using the variable genes as input,

and the nearest-neighbor graphs were computed using the first

10 principal components within the FindNeighbors function.

Each evaluated method (recall, sc-SHC, CHOIR, and scAce) was

provided with the top 1,000 highly variable genes and the first

10 principal-component embeddings. The implementations of

the Louvain clustering algorithms analyzed the nearest-neighbor

graphs with resolution values set to g ¼ 0.8.

Tabula Muris

To compare the clustering performance of recall against

competing methods, we utilized the 20 organs from the Tabula

Muris dataset.24 This dataset contains 53,760 total cells with hu-

man-curated cell type labels for each organ. After following the

quality control steps outlined in the original study (i.e., filtering

to exclude cells with less than 500 total genes detected and to

exclude cells with less than 50,000 total reads) and additionally

removing cells without a manually curated cell type label, we

were left with a total of 45,423 cells for the analysis.

PBMC 3K, Bone Marrow 30K, and Bone Marrow 40K

To assess the runtime and peak memory usage of recall and other

competing approaches, we utilized multiple datasets available

through the SeuratData R package (web resources). In particular,

we downloaded data under the pbmc3k, bmcite, and hcabm40k

variable names. For each of these datasets, recall was run with a
2025



larger starting resolution parameter of g ¼ 1.5 to ensure that more

than one iteration took place.

PBMC 68K

We took scRNA-seq data from fluorescence-activated cell-sorted

(FACS) populations of peripheral blood mononuclear cells

(PBMCs) provided by Zheng et al.1 and concatenated each popula-

tion into one dataset. This dataset contains 68,579 cells with ten

different labels corresponding to each purified population that

was sorted. The dataset can be found on the 103 Genomics web-

site (web resources).

Liver 8K

This dataset contains 8,444 cells provided byMacParland et al.25 It

can be loaded using the HumanLiver R package (web resources).

For this dataset, recall was run with a larger starting resolution

parameter of g ¼ 1.5 to ensure that more than one iteration

took place.
Results

The recall algorithm uses the guiding principle that well-

calibrated clusters (i.e., those representing real groups)

should have statistically significant differentially expressed

genes after correcting for post-selective testing, while over-

clustered groups will have much fewer. We use this rule to

re-cluster cells iteratively until the inferred clusters are well

calibrated and the observed differences in expression be-

tween groups are not due to the effects of double dipping.

We again emphasize that the main goal of recall is to pro-

vide users with the correct number of clusters. The ratio-

nale is that estimating the correct number of clusters mit-

igates the effects of double dipping on post-selective

inference for downstream analyses.

As a simple proof of concept, we simulated single-cell

gene expression data to compare the clusters found by

the widely used Louvain algorithm with default parameter

settings in Seurat (with the FindClusters function where

the resolution parameter is set to 0.8) versus using the

same Louvain algorithm paired with recall. We generated

data under two scenarios, each with 1,000 replicates. In

the first scenario, there was only one true cell type. Here,

the default approach with Seurat incorrectly identified

four to seven clusters in all 1,000 replicates (i.e., an error

rate of how many times more than a single cluster was

identified ¼ 100%), while recall correctly identified only

a single cluster (error rate ¼ 0%) (Figures 1B and 1C). In

the second scenario, we simulated data such that there

were three true cell types. Here, across each of the 1,000

replicates, the Seurat default incorrectly identified four

clusters by splitting the larger group into two clusters

(i.e., an error rate of howmany times more than three clus-

ters were identified ¼ 100%), whereas recall correctly iden-

tified three clusters (error rate ¼ 0%) (Figures 1D and 1E).

As a more comprehensive benchmarking study, we

next simulated five replicates of datasets with 1, 5,

and 10 groups each of varying sample sizes in the range

N ¼ 5,000, 10,000, 25,000, and 50,000 cells. Cell type pro-

portions were drawn from a Dirichlet distribution, which
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allowed for a mixture between rare and common cell types

(see material and methods). We evaluated each strategy for

generating artificial null variables within recall and

compared them to three recently proposed methods for

preventing over-clustering: (1) sc-SHC,9 (2) CHOIR,10 and

(3) scAce.11 Both sc-SHC and CHOIR utilize hierarchical

clustering paired with permutation tests to decide whether

or not to merge clusters, while scAce decides if a pair of

clusters should be merged by comparing inter-cluster

versus intra-cluster distances. To empirically assess the rela-

tive quality of clustering assignments resulting from each

method, we utilized common metrics including the

adjusted Rand index (ARI), the Jaccard index, the

Fowlkes-Mallows index (FMI), the V-measure, complete-

ness, and homogeneity.26 We include a vignette on these

cluster evaluation metrics showing their behavior in a sim-

ple case study of over-clustering and under-clustering

(Note S3; Figure S2). In the main text, we focus our ana-

lyses on the ARI due to its popularity in the field26 and

the V-measure because it is the harmonic mean between

completeness and homogeneity and balances the impact

of over-clustering and under-clustering.

The results for each method as evaluated by the V-mea-

sure (Figure 1F), ARI (Figure S3), completeness (Figure S4),

homogeneity (Figure S5), Jaccard index (Figure S6), and

FMI (Figure S7) show that recallþZIP has performance

similar to sc-SHC, CHOIR, and scAce in simulation. The re-

callþZIP, recallþPoisson-copula, and recallþNB-copula al-

gorithms showed the best performance out of all the recall

variants. Performance in terms of computational efficiency

and peak memory consumption for each method is shown

in Figures S8 and S9, respectively. Here, the recall methods,

which simulate artificial genes from independent null distri-

butions, had short runtimes, similar to sc-SHC and scAce.

The CHOIR approach was the slowest competing method

when datasets were simulated to have 50,000 cells, and

the inference for the two recall copula algorithms was so

computationally demanding that they failed to even scale

to 50,000 cells. Overall, the combined need for both perfor-

mance and scalabilitymade the independent ZIP the default

choice as the artificial variable distribution for recall.

Notably, the recallþZIP model proved to be robust in

detecting rare cell types as a function of both the number

of marker genes and the total number of rare cells

(Figures S10–S15; see material and methods for details). In

one scenario where we have sparsely sampled and highly

heterogeneous populations (i.e., 5,000 cells with 10 groups),

recallþZIP has a slightly worse ARI and V-measure (scoring

between 0.85 and 0.90 for both measures) when compared

to scAce and CHOIR (scoring between 0.95 and 1.0) but still

outperforms sc-SHC.

To evaluate the performance of recall on real scRNA-seq

studies, we analyzed 20 different tissues from the Tabula

Muris dataset.24 We again compared recall (implemented

with each choice of null distribution for the artificial vari-

ables) to sc-SHC, CHOIR, and scAce; all recall results were

determined using the Louvain algorithm. We analyzed
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the 20 different tissues separately and evaluated the perfor-

mance of each method by comparing their inferred cluster

assignments to the manually curated cell type annotations

from the original Tabula Muris study.

When evaluated by the ARI (Figures 2A and S16), V-mea-

sure (Figures 2B and S17), completeness (Figure S18), ho-

mogeneity (Figure S19), Jaccard index (Figure S20), and

FMI (Figure S21), recallþZIP shows state-of-the-art

performance. In particular, when evaluated by the ARI, re-

callþZIP performs the best in 13 out of the 20 tissues, sc-

SHC performs the best in 2 tissues, CHOIR performs the

best in 0 tissues, and scAce performs the best in 5 tissues.

Similarly, when evaluated by the V-measure, recallþZIP

performs the best in 15 tissues, while sc-SHC performs

the best in 1 tissue, CHOIR performs the best in 0 tissues,

and scAce performs the best in 4 tissues. The clustering re-

sults for all algorithms across all 20 tissues are displayed via

uniform manifold approximation and projection (UMAP)

plots in Figures S22–S41 (for visualization purposes only).

For many tissues, CHOIR tended to group cells into

many small sub-populations, while for other tissues, sc-

SHC severely under-clustered and failed to find any

distinct cell types at all, returning only a single group

(e.g., aorta, brain myeloid, and pancreas). In the dia-

phragm tissue, which contains five manually curated cell

types, recallþZIP and sc-SHC matched the five manually

curated cell type labels almost exactly, while CHOIR and

scAce over-clustered the data with 10 and 8 clusters,

respectively (Figure 2C). On the other hand, in the limb

muscle dataset, which contains six manually curated cell

types, recallþZIP finds six clusters that closely match the

manually curated labels (ARI ¼ 0.97 and V-measure ¼
0.95), while sc-SHC finds 8 clusters (ARI ¼ 0.74 and

V-measure ¼ 0.79), CHOIR finds 16 clusters (ARI ¼ 0.40

and V-measure ¼ 0.69), and scAce finds 11 clusters

(ARI ¼ 0.54 and V-measure ¼ 0.76) (Figure 2D). In terms

of calling clusters exactly according to the curated cell

type groups, recall matched the correct number of clusters

in 3 tissues (aorta, diaphragm, and limb muscle), and sc-

SHC matched the correct number of clusters in 1 tissue

(mammary gland), while CHOIR and scAce both matched

the correct number of clusters in 0 tissues (Figure S42).

We next investigated the power of each algorithm to

detect rare cell types in the Tabula Muris study

(Figure S43). We chose to focus on the macrophages in

the limb muscle and T cells in the diaphragm because

they had the fewest number of cells in their respective tis-

sues (N ¼ 31 and 35, respectively) (Figures S43A and

S43D). In this experiment, we re-applied each clustering

method to each tissue type, with the macrophages and

Tcells downsampled to haveN ¼ 5, 10, 15, 25, and 30 cells

in the dataset (Figures S43B and S43E). The main goal of

this analysis is to assess when each method is no longer

able to differentiate the rare cells as being their own indi-

vidual cluster. When analyzing macrophages in the limb

muscle, this threshold was N ¼ 20 cells for recallþZIP

and N ¼ 25 cells for sc-SHC (Figure S43C). Interestingly,
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CHOIR and scAce occasionally found more clusters after

downsampling the macrophages. In the case of T cells in

the diaphragm, while recallþZIP stopped detecting the

rare cell type at N ¼ 25 cells, it was still more accurate

and stable than sc-SHC, CHOIR, and scAce—all of which

consistently, greatly over-clustered in each scenario

(Figure S43F). The fact that these methods often over-clus-

tered is a possible explanation for why CHOIR and scAce

outperformed recallþZIP in the rare cell type simulation

with 10 cell types, albeit by a small difference in the ARI

and V-measure (Figures S14 and S15).

Importantly, recallþZIP exhibited better computational

efficiency (i.e., shorter runtime) than the other methods.

After running each method on a personal laptop with 6

CPU cores, recallþZIP was overall the fastest, both sc-

SHC and scACe exhibited similarly short runtimes, and

CHOIR was the slowest (Figure 2E). For example, in the

fat tissue, recallþZIP finished 0.9 min faster than sc-SHC,

1.4 min faster than scAce, and 15.0 min faster than

CHOIR.

To empirically show that the effect of double dipping on

downstream tasks is minimized when the correct clusters

are estimated, we further compared the clusters deter-

mined by the default Seurat implementation of the Lou-

vain algorithm to the clusters determined by the Louvain

algorithm with recallþZIP for the limb muscle tissue in

the Tabula Muris study (Figures 3A–3C). Mimicking the

typical differential expression workflow, we used the

FindMarkers function to identify the top 10 marker genes

for each cluster inferred by the Seurat default and

recallþZIP. Qualitatively, the default Louvain implementa-

tion appears over-clustered, where inferred clusters 1, 2, 6,

and 7 show similar marker gene expression to one another,

as do inferred clusters 3 and 5 (Figure 3D). In contrast, the

groups found by recallþZIP showmuch less shared expres-

sion between clusters (Figure 3E). To further investigate

whether cells had been over-clustered by the default Lou-

vain algorithm, we performed differential expression anal-

ysis between its inferred clusters and observed a high cor-

relation in p values when comparing (1) inferred clusters

1 and 2 versus 3 (Pearson correlation r ¼ 0:923) and (2) in-

ferred clusters 1 and 2 versus 5 (r ¼ 0:925) (Figure 3F). For

the default Louvain algorithm, inferred clusters 1 and 2

both correspond to skeletal muscle satellite cells as anno-

tated by the Tabula Muris Consortium, and inferred clus-

ters 3 and 5 correspond to mesenchymal stem cells. As a

comparison, for recallþZIP, only inferred cluster 1 corre-

sponds to skeletal muscle satellite cells, and only inferred

cluster 2 corresponds to mesenchymal stem cells. Differen-

tial expression analysis for the recallþZIP clusters

(Figure 3G) results in 506 differentially expressed genes

(adjusted p value < 0.05 and an absolute log fold change

greater than one), which include many known skeletal

muscle satellite cell markers up-regulated in its inferred

cluster 1 relative to its inferred cluster 2 (e.g., Des, Chodl,

Myl12a, Asb5, Sdc4, Apoe, Musk, Myf5, Chrdl2, and

Notch3)27 and mesenchymal stem cell type markers
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Figure 2. recall+ZIP shows state-of-the-art clustering performance on the Tabula Muris dataset
(A and B) Comparison of recallþZIP, sc-SHC, CHOIR, and scAce using (A) ARI and (B) V-measure for each tissue type in Tabula Muris.
(C and D) Uniform manifold approximation and projection (UMAP) plots displaying the cell type annotations for (C) the diaphragm
tissue and (D) the limbmuscle tissue datasets. From left to right, we show themanually curated labels from the original study and clusters
inferred by recallþZIP, sc-SHC, CHOIR, and scAce.
(E) Runtime comparison of recallþZIP, sc-SHC, CHOIR, and scAce for each tissue in the TabulaMuris dataset. Eachmethodwas run using
6 CPU cores to emulate the use of a personal laptop.
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Figure 3. Using recall+ZIP to avoid over-clustering leads to improved hypothesis generation for downstream analyses
(A–C) Uniformmanifold approximation and projection (UMAP) plots of the (A) manually curated cell ontology class labels, (B) inferred
clusters using the Louvain algorithm with default parameter settings in Seurat, and (C) inferred clusters using the Louvain algorithm
paired with recallþZIP for the limb muscle tissue from the Tabula Muris study.
(D) Heatmap of the top 10 marker genes for each inferred cluster shown in (B) with the default Louvain implementation.
(E) Heatmap of the top 10 marker genes for each inferred cluster shown in (C) with the Louvain algorithm paired with recallþZIP.
(F) Scatterplots and corresponding Pearson correlation coefficient (r) of the �log10 p values for all genes being tested for
differential expression between (1) inferred clusters 1 and 2 versus 3 (top, r ¼ 0:923) and (2) inferred clusters 1 and 2 versus 5 (bottom,
r ¼ 0:925) from (D) using the default Louvain algorithm in Seurat.
(G) Volcano plot of all genes being tested for differential expression between inferred clusters 1 and 2 from (E) using the recallþZIP
version of the Louvain algorithm. The genes colored in red and blue are those with a significant p value after Bonferroni correction
and with a log2 fold change greater than 1 (i.e., up-regulated in cluster 1) or less than �1 (i.e., up-regulated in cluster 2), respectively.
The inferred cluster 1 from recallþZIP corresponds to skeletal muscle satellite cells and cluster 2 corresponds to mesenchymal stem cells.
The genes that are labeled are well-knownmarkers of both skeletal muscles (red, up-regulated in cluster 1 relative to cluster 2) and cardiac
mesenchymal stem cells (blue, up-regulated in cluster 2 relative to cluster 1).
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up-regulated in the inferred cluster 2 relative to the in-

ferred cluster 1 (e.g., Col6a3, Col1a1, Igfbp6, Pdgfra, C1s,

Mfap5, Ecm1, Dcn, and Dpep1).28

We then benchmarked the quality of marker genes

found after calibrating clustering with recallþZIP versus

the genes that were selected after using countsplit7 and

ClusterDE,6 both of which are differential expression ap-

proaches that correct for double dipping. Once again, we

assessed the differentially expressed genes between clus-

ters corresponding to skeletal muscle satellite cells and

mesenchymal stem cells in the limb muscle tissue

(Figure S44A). The countsplit approach generates clusters

using a training dataset and then tests for differential

expression on a test dataset; alternatively, ClusterDE uses

the Seurat default clusters. Both recall and ClusterDE6

make use of synthetic null variables. The key distinction

between these methods is that ClusterDE takes pre-identi-

fied cell clusters and computes artificial null data to cali-

brate statistical null hypothesis tests between those clus-

ters, while recall computes artificial null data on the full

dataset first and uses the augmented data matrix as input

to the clustering algorithm to calibrate the choice of clus-

ters. The p values obtained by recallþZIP were highly corre-

lated with those obtained via countsplit (r ¼ 0:909;

Figure S44B) and moderately correlated with the q values

produced by ClusterDE (r ¼ 0:652; Figure S44C). Note

that the latter result is limited by the fact the most signif-

icant genes detected by ClusterDE all have the same q

value. Since countsplit has been proven to produce well-

calibrated p values,7 we investigated why the p values pro-

duced by recallþZIP appeared to be inflated (i.e., greater in

magnitude on the �log scale; Figure S44B). Noticing that

the recallþZIP inferred clusters had more cells because

the algorithm aims to protect against over-clustering, we

randomly downsampled them uniformly to be an analo-

gous size to the clusters identified by countsplit. The p

values resulting from these downsampled recallþZIP clus-

ters were then on the same order of magnitude as the

countsplit p values (Figure S44D). This demonstrates that

when clusters are indeed well calibrated, marker genes

can be detected with increased statistical significance.

The high overlap of differentially expressed genes identi-

fied by all methods is shown in Figure S44E. There are

more marker genes detected by ClusterDE, most likely

because it controls false discovery rates at 5%. This is a

less stringent criterion than what is applied in recallþZIP

and countsplit, which both use Bonferroni correction to

control the family-wise error rate at 5%.

Since this analysis on real data only qualitatively assesses

these three methods, we performed an additional set of

simulations (described in detail in material and methods)

to better evaluate their ability to detect marker genes in a

controlled setting (Figure S45). Overall, recallþZIP and

ClusterDE showed very similar performances in terms of

precision, recall (i.e., sensitivity), and F1 score across vary-

ing cluster sizes and numbers of differentially expressed

genes. On the other hand, while countsplit had similar pre-
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cision, it had a much worse sensitivity and F1 score across

the different settings.

As a final analysis of computational scalability, we bench-

marked the runtime and peak memory use of recallþZIP, sc-

SHC, CHOIR, and scAce on several other publicly available

datasets containing N ¼ 2,700, 8,444, 30,000, and 40,000

cells (Figures S46 and S47).25,29,30 Each method was run

on a machine with 16 CPU cores, and we ran an additional

version of scAce on a GPU. On these datasets, sc-SHC was

the fastest, recallþZIP was a close second, the two scAce im-

plementations were third and fourth, and CHOIRwas an or-

der of magnitude slower than all three othermethods in last

place. Additionally, we applied each method using their

default settings on subsets of the 68,579 total PBMCs pro-

vided by Zheng et al.1 as well as on the full dataset. These

subsets were of sizes N ¼ 1,000, 2,000, 5,000, 10,000,

20,000, 30,000, 40,000, 50,000, and 60,000 cells. On these

subsets, both recallþZIP and sc-SHC were very similar in

speed, while CHOIR was again an order of magnitude

slower (Figure S48). In terms of peakmemory consumption,

recallþZIP used the least memory, while sc-SHC showed

quadratic memory growth as a function of the number of

cells (Figure S49). In summary, recallþZIP is as fast (or faster)

than alternative approaches and uses less memory. Notably,

the recall algorithm required less than 10 GB of memory on

datasets with nearly 70,000 cells and was able to cluster

those cells in less than 15 min with 16 CPU cores. This scal-

ability analysis demonstrates the ability to analyze large da-

tasets with recall on a personal laptop.
Discussion

In conclusion, we present recall, an approach aimed at pro-

tecting against over-clustering when analyzing single-cell

transcriptomic data. The goal of recall is to provide users

with calibrated cluster assignments under the principle

that, when correctly inferred, the effect of double dipping

on downstream tasks (e.g., differential expression analyses)

is minimized. Through the analysis of several large-scale

datasets, we demonstrated that recall provides state-of-

the-art clustering results at a fraction of the runtime and

computer memory when compared to other competing al-

gorithms. Importantly, recall can be efficiently run on a

personal laptop when analyzing tens of thousands of cells.

We note that cells may exhibit a variety of heterogeneous

cell states, continuous axes of variation, or other complex-

ities beyond discrete groups, for which recall, or any clus-

tering algorithm, is not perfectly suited. With its speed

and flexibility, recall will save practitioners the hours often

spent manually investigating and re-clustering scRNA-seq

datasets. We envision that recall will be a useful aid when

needing to assign labels to unknown cell types.

The recall approach is not without its limitations. First,

the algorithm works downward from an upper bound

on the number of clusters (often parameterized by K in

the literature). This strategy could potentially lead to
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under-clustered results if the starting upper bound is too

conservative (i.e., if K is too small). Recall can be initialized

with a large set of clusters to circumvent this limitation;

however, this will come with an additional computational

cost because more iterations will likely need to be per-

formed until the algorithm converges onto a statistically

appropriate number of clusters. Second, while the recall

software flexibly allows for artificial null genes to be gener-

ated from a wide range of probabilistic distributions, the

choice of prior distribution is ultimately left up to the

user. As shown in both our simulations and analyses on

the Tabula Muris dataset, if the synthetic null genes are

generated such that the underlying assumptions of the

original single-cell data are not met, then recall can be un-

derpowered (Figure 1F). Due to the desire to have a method

that is both well powered and scalable, we highlighted the

independent ZIP model as the default choice for construct-

ing artificial variables. A key area of our future work is to

extend the recall algorithm to select the most appropriate

null distribution adaptively in a data-driven way, for

example, via model selection by comparing themaximized

likelihood of distributions fit over the original data. Third,

the current implementation of recall does not account for

additional metadata or confounding that might be present

in a scRNA-seq dataset. For example, in the presence of

batch effects, spurious relationships between cells can be

created, and recall might determine that cells of the same

type need to be partitioned into different groups (or vice

versa). To that end, incorporating data integration steps,

like batch effect correction, into the recall software is a rele-

vant direction for future work. One possible extension of

the recall algorithm would be to run an integration

approach (e.g., Harmony31) on the principal-component

embeddings of the augmented count matrix to correct

for possible confounding before building a K-nearest

neighbor graph and performing calibrated clustering.
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Supplemental Note 11

In this Supplemental Note, we derive the maximum likelihood estimates (MLE) for the zero-inflated2

Poisson (ZIP). The ZIP model mixes two generative processes—the first generates zeros and the second3

is governed by a Poisson distribution that generates counts (some of which may also be zero). For a4

random variable X → ZIP(ω0,ε), the probability mass function is5

Pr[X = 0] = ω0 + (1↑ ω0) exp{↑ε}, Pr[X = x] = (1↑ ω0)
ε
x exp{↑ε}

x!
(1)6

where x ↓ N
+ is any non-negative integer value, ε is the expected count from the Poisson distribution7

(i.e., the rate parameter), and ω0 is the proportion of extra zeroes arising in addition to those from the8

underlying Poisson distribution. The log-likelihood equation for the ZIP model, given the expression of9

the j-th gene, takes the following form10

ϑ(ω0,ε;x1, . . . , xn) =
∑

i:xi=0

log [ω0 + (1↑ ω0) exp{↑ε}] +
∑

i:xi →=0

log

[
(1↑ ω0)

ε
x exp{↑ε}

x!

]
. (2)11

We now derive the MLEs for unknown parameters ω0 and ε. Let r0 =
∑

i I(xi = 0)/n denote the12

proportion of observed zeroes for a given feature across all samples (with I(•) being an indicator function).13

Notice that Eq. (2) simplifies to the following14

ϑ(ω0,ε;x1, . . . , xn) = nr0log [ω0 + (1↑ ω0) exp{↑ε}] + n(1↑ r0)[log (1↑ ω0)↑ ε] + nx̄log ε. (3)15

We now can find the closed form estimates for both parameters in two parts.16

Estimating equation for ω17

To begin, we take the partial derivative of Eq. (3) with respect to ω0. This takes the following form18

ϖϑ

ϖω0
=

nr0(1↑ exp{↑ε})
ω0 + (1↑ ω0) exp{↑ε} ↑ n(1↑ r0)

1↑ ω0
. (4)19

Next, we set this expression equal to 0 and simplify such that20

nr0(1↑ exp{↑ε})(1↑ ω0)↑ n(1↑ r0)(ω0 + (1↑ ω0) exp{↑ε}) = 0. (5)21

We then may solve for ω0 and get the follow expression22

ω0 =
exp{ε}r0 ↑ 1

exp{ε}↑ 1
. (6)23

Treating ω0 as a nuisance parameter, we can substitute this back into the log-likelihood in Eq. (3) to24

obtain the profile log-likelihood for ε where25

ϑp(ϑ(ω0,ε;x1, . . . , xn,ω0) = ↑n(1↑ r0)[ε+ log (1↑ exp{↑ε})] + nx̄log ε+ constant. (7)26

Taking the derivative of the profile log-likelihood in Eq. (7), with respect to ε, yields27

ϖϑp

ϖε
=

exp{ε}n(1↑ r0)

exp{ε}↑ 1
+

nx̄

ε
. (8)28

Next, we set this expression equal to 0 and simplify such that29

0 = (1↑ r0)ε+ x(1↑ exp{↑ε}) ↔↗ x̄(1↑ exp{↑ε}) = ε(1↑ r0) (9)30
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which is widely reported in the literature [6, 7]. Typically, it is claimed that the right hand expression31

of Eq. (9) must be solved numerically; however, it was recently shown that this equation can be solved32

using the principal branch of the Lambert W function [7]. Let ϱ = x̄/(1 ↑ r0) and W0 be the principal33

branch of the Lambert W function (i.e., W0(a) = b implies b exp{b} = a). In this case, Eq. (9) is then34

ϱ =
ε

1↑ exp{↑ε} . (10)35

The key now is to isolate ε. We start making the following transformation36

ε = ϱ(1↑ exp{↑ε}). (11)37

Next, we subtract ϱ from both sides of the equation and simplify the expression to be38

ε↑ ϱ = ↑ϱ exp{↑ε}. (12)39

Then, we multiply both sides of the expression by exp{ε↑ ϱ} such that40

(ε↑ ϱ) exp{ε↑ ϱ} = ↑ϱ exp{↑ϱ}. (13)41

It is important to notice that this the above is of the form b exp{b} = a and can be inverted using the42

principal branch of the Lambert W function to obtain43

ε↑ ϱ = W0(↑ϱ exp{↑ϱ}). (14)44

Finally, this gives us the MLE as ε̂ = W0(↑ϱ exp{↑ϱ}) + ϱ.45

Estimating equation for ε046

Remember in Eq. (6), we showed that the partial derivative of the log-likelihood in Eq. (3) with respect47

to ω0 simplified to48

ω0 =
exp{ε}r0 ↑ 1

exp{ε}↑ 1
. (15)49

Furthermore, using the profile likelihood in Eq. (9), we also derived that50

x̄(1↑ exp{↑ε}) = ε(1↑ r0) ↔↗ x̄

ε
=

1↑ r0

1↑ exp{↑ε} . (16)51

Subtracting by 1 on both sides of Eq. (16) and simplifying, we can rearrange this expression to be52

1↑ x

ε
= 1↑ 1↑ r0

1↑ exp{↑ε}

= 1↑ exp{ε}↑ exp{ε}r0
exp{ε}↑ 1

=
exp{ε}r0 ↑ 1

exp{ε}↑ 1

= ω0

(17)53

Therefore, the maximum likelihood estimate is ω̂0 = 1↑ x̄/ε̂.54
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Consider a study with single-cell RNA sequencing (scRNA-seq) expression data for i = 1, . . . , N cells that56

each have measurements for j = 1, . . . , G genes. Let this dataset be represented by an N ↘G matrix X57

where the column-vector xj denotes the expression profile for the j-th gene. In the recall framework,58

we generate an artificial null expression vector x̃j for each gene in the study xj . Next, we concatenate59

all of the synthetic genes together and construct a matrix of artificial null variables X̃ = [x̃1, . . . , x̃G].60

During an analysis, recall finds the optimal resolution parameter for the Louvain algorithm (denoted61

as ς in the main text) by using the combined data frame containing both the real gene expression matrix62

and the artificial null variables X
↑ = [X; X̃]. In this Supplemental Note, we demonstrate why recall63

does not perform any re-clustering on just the original gene expression X once the resolution parameter64

is estimated. To do this, we use a small scRNA-seq study of peripheral blood mononuclear cells (PBMCs)65

from 10x Genomics (via reproducible R code below). We begin by loading in the required packages and66

the single-cell dataset.67

### Set seed for reproducibility ###
set.seed(1234)

### Load in libraries and packages ###
library(Seurat)
library(recall)
library(SeuratData)
library(ggplot2)
library(recallreproducibility)

### Load in data ###
data("pbmc3k")

68

Next, we process the single-cell dataset with a typical bioinformatic workflow using Seurat [8].69

pbmc3k <- UpdateSeuratObject(pbmc3k)

pbmc3k <- NormalizeData(pbmc3k)
pbmc3k <- FindVariableFeatures(pbmc3k)
pbmc3k <- ScaleData(pbmc3k)
pbmc3k <- RunPCA(pbmc3k)
pbmc3k <- FindNeighbors(pbmc3k)
pbmc3k <- RunUMAP(pbmc3k, dims = 1:10)

70

Now, we run a calibrated clustering analysis using recall on the concatenated data X̃.71

pbmc_recall <- FindClustersRecall(pbmc3k)
72

The optimal resolution parameter used by recall for the Louvain algorithm was ς = 0.4096. To demon-73

strate the main point of this vignette, we feed this resolution parameter ς back in the Louvain algorithm74

and allow it to perform clustering on the original gene expression data X only.75
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pbmc_default <- FindClusters(pbmc3k, resolution = 0.4096)
76

Finally, we plot uniform manifold approximation and projection (UMAP) plots with each of the cluster77

labels applied (for visualization purposes only).78

umap_recall <- custom_scatter(pbmc_recall,
"umap",
group_by = "recall_clusters",
x_title = "UMAP 1",
y_title = "UMAP 2",
pt.size = 2) +
Seurat::NoLegend()

umap_default <- custom_scatter(pbmc_default,
"umap",
group_by = "seurat_clusters",
x_title = "UMAP 1",
y_title = "UMAP 2",
pt.size = 2) +
Seurat::NoLegend()

cl1 <- patchwork::wrap_elements(panel =
grid::textGrob(’Initial clustering\nwith recall’,

gp = grid::gpar(fontsize = 64)))

cl2 <- patchwork::wrap_elements(panel =
grid::textGrob(’Re-clustering with

\nnew recall resolution’,
gp = grid::gpar(fontsize = 64)))

comparison_umap <- cl1 + cl2 +
umap_recall + umap_default +
patchwork::plot_layout(widths = c(5, 5),

heights = c(1,3))

ggsave("rerun_clustering.png", comparison_umap, dpi = 600,
width = 24, height = 12, units = "in")

79

As evident in Fig. S1, the clusters obtained by each method (even with the same resolution parameter)80

are di!erent — this is because the optimization ultimately happens on di!erent sets of input data.81

Specifically, there were 8 clusters identified by recall on the combined data frame containing both the82

real gene expression matrix and the artificial null variables X↑ = [X; X̃], but 9 clusters identified by the83

Louvain algorithm with the same resolution when run only on the original data X.84
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In this Supplemental Note, we detail the metrics used to evaluate the quality of clustering assignments86

against ground truth, which are referred to as extrinsic clustering metrics. For the analyses conducted in87

the main text, we use the manually curated cell type annotations from the original studies as a proxy for88

ground truth labels. All of the metrics described here (except for the adjusted Rand index) vary between 089

(poor agreement between inferred cluster assignments and ground truth) and 1 (good agreement between90

inferred cluster assignments and ground truth). The adjusted Rand index (ARI) ranges between [-1/2,91

1] where 1 represents perfect agreement between label sets, 0 represents random agreement, and negative92

values represent worse than random agreement [1]. There are two broad classes of clustering evaluation93

metrics utilizing ground truth labels: (1) confusion matrix-based metrics which are based on notions of94

true positives, true negatives, false positives, and false negatives, and (2) entropy-based metrics which95

measure the uncertainty in inferred clustering assignments given a set of reference labels (and vice versa).96

Confusion Matrix-Based Cluster Evaluation Metrics97

The typical confusion matrix is defined as follows for a classification problem with 2 classes.98

True Label

Class 1 Class 2 Total

Inferred Label
Class 1 TP FP a1

Class 2 FN TN a2

Total b1 b2 n

where TP is the number of true positives, FP is the number of false positives, TN is the number of true99

negatives, and FN is the number of false negatives. This can be similarly defined for a classification100

problem with an arbitrary number of classes. Since a clustering result may have a di!erent number of101

inferred clusters than the number of true labels and since it is not immediately obvious how to know102

which true label an inferred cluster might correspond to, we instead define these metrics over pairs of103

points in the following way:104

• True positives (TP) is the number of cell pairs that have the same true labels and are assigned the105

same inferred labels after clustering.106

• True negatives (TN) is the number of cell pairs that have di!erent true labels and also have107

di!erent inferred labels after clustering.108

• False positives (FP) is the number cell pairs that have di!erent true labels but are assigned the109

same inferred labels after clustering.110

• False negatives (FN) is the number of cell pairs that have the same true labels but are assigned111

di!erent inferred labels after clustering.112

We describe a series of confusion matrix-based cluster evaluation metrics below using these concepts. To113

simplify notation, we will let nij , ai, and bj be values obtained from a contingency table, and n =
∑

ij nij114

for indices i and j ↓ {1, 2}. To be specific, TP = n11 , FP = n12, FN = n21, and TN = n22, respectively.115

An illustration of these metrics can be found in Fig. S2.116
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Adjusted Rand Index (ARI)117

The adjusted Rand index (ARI) captures the similarity between labels inferred by a clustering algorithm118

and the reference labels. It is based on the Rand index (RI) which is computed as the following119

RI =
TP + TN

TP+ FP + FN+ TN
=

b1

n
. (18)120

The ARI corrects for the RI measurement’s sensitivity to chance via permutation [2] where121

ARI =
RI↑ E[RI]

1↑ E[RI]
=

∑
ij

(nij

2

)
↑
[∑

i

(ai

2

)∑
j

(bj
2

)] (n
2

)

1/2
[∑

i

(ai

2

)
+

∑
j

(bj
2

)]
↑

[∑
i

(ai

2

)∑
j

(bj
2

)] (n
2

) . (19)122

Here, E[RI] denotes the expectation of the Rand index.123

Jaccard Similarity Index124

For high-dimensional single-cell studies with a large number of both cells and cell types, the number of125

true negatives can be quite large. The Jaccard similarity index captures the amount of overlap between126

two finite sets. Overall, the Jaccard index can be a useful alternative to the ARI because it ignores the127

contribution of the true negatives. Formally, it is defined as the following128

J =
TP

TP + FP + FN
=

n11

a1 + n21
(20)129

which ranges between [0, 1] where 1 denotes complete overlap between the inferred and true cluster labels,130

and 0 signifies no overlap.131

Folkes-Mallows Index (FMI)132

The Folkes-Mallows Index is the geometric mean of the positive predictive value (PPV) and the true133

positive rate (TPR) [3]. More concretely, these values are computed via the following134

PPV =
TP

TP + FP
=

n11

a1
TPR =

TP

TP + FN
=

n11

b1
(21)135

A higher value for the Fowlkes–Mallows index indicates a greater similarity between the inferred clusters136

and the true labels. This is computed by137

FMI =
≃
PPV↘ PPR. (22)138

The FMI is also on the unit scale ranging from [0, 1] where 0 corresponds to the worst inferred clusters139

such that both inferred and true groups are completely unrelated, and 1 corresponds to the scenario in140

which both groupings perfectly agree.141

Entropy-Based Cluster Evaluation Metrics142

Entropy-based clustering metrics aim to quantify the amount of information shared between the inferred143

label distribution and the reference label distribution. We describe a series of these metrics below.144
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Completeness145

Completeness describes the uncertainty in the inferred clustering assignment conditioned on the true146

labels where 1 is a “good” value for satisfying completeness. In other words, it quantifies how often cells147

of the same type are also in the same cluster. Formally,148

C = 1↑ H(A |B)
H(A)

(23)149

where B represents the set of true labels, A represents the inferred clustering assignments, and H(·)150

represents the Shannon entropy of a given label distribution [4]. When all cells from true group B151

belong to the same inferred cluster, the completeness metric equals 1. For the degenerate case where152

H(A,B) = 0, we define C = 0.153

Homogeneity154

Homogeneity describes the uncertainty in the true label conditioned on the cluster assignment where 1155

is a “good” value for satisfying homogeneity. In other words, it quantifies the amount that cells within a156

cluster are also from the same cell type. Formally, homogeneity is defined157

H = 1↑ H(B |A)

H(B) (24)158

where, again, B represents the set of true labels, A represents the inferred clustering assignments, and159

H(·) represents the Shannon entropy of a given label distribution [4]. When all cells from all of the160

clusters contain only cells that are from the same true group, the homogeneity metric equals 1. For the161

degenerate case where H(A,B) = 0, we define H = 0.162

V -Measure Balances Between Completeness and Homogeneity163

A key observation when using completeness and homogeneity to evaluate clustering algorithms is that164

they tend to penalize over- and under-clustering, respectively.165

• Consider a simple example of over-clustering where there is a group of cells that is split in half into166

two clusters. Then the uncertainty in the inferred clustering assignments A, given the true labels B,167

is high because half of the group is in each cluster. Formally, this means that the Shannon entropy168

H(A |B) is high and so the completeness will be low.169

• On the other hand, consider a simple example of under-clustering where two di!erent cell groups170

are assigned to the same cluster. Then the uncertainty in the true group labels B, given the inferred171

clustering assignments A, is high because the cells in the cluster could come from either of the two172

groups. Formally, the entropy H(B |A) is high and so homogeneity will be low.173

The V -measure is defined as the weighted harmonic mean of completeness and homogeneity where174

V (φ) =
(1 + φ)HC

φH + C
(25)175

where φ dictates the contribution of completeness versus homogeneity [4]. In this paper, we set φ = 1176

such that the two are weighted equally and the V -measure is simply177

V (1) =
2HC

H + C
(26)178

which is the simple harmonic mean of completeness and homogeneity. The V -measure ranges between179

[0, 1] where 1 represents total information sharing between label sets and 0 represents no information180

sharing between label sets. It requires that both homogeneity and completeness are maximized and will181

be zero if a clustering algorithm completely fails to satisfy either of the two properties.182
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Simulation Study: Behavior of Cluster Evaluation Metrics183

In order to quantitatively demonstrate the behavior of both the confusion matrix-based and entropy-184

based clustering metrics, we consider a synthetic dataset with three groups of cells (see Fig. S2). When185

an algorithm under-clusters, it will merge two of the clusters; while, when an algorithm over-clusters,186

it will infer a fourth group made up of cells from two of the true groups. The table below shows the187

behavior of di!erent clustering evaluation metrics in the cases when an algorithm finds the true groups,188

under-clusters, and over-clusters.189

Metric True Groups Under-Clustered Over-Clustered

ARI 1.0 0.55 0.83

Jaccard index 1.0 0.58 0.78

FMI 1.0 0.76 0.88

Homogeneity 1.0 0.54 0.94

Completeness 1.0 0.92 0.77

V -measure 1.0 0.68 0.85

Notice that ARI, Jaccard index, and homogeneity qualitatively perform similarly by penalizing under-190

clustering more than over-clustering. In contrast, completeness penalizes over-clustering and rewards191

under-clustering. FMI and V -measure balance between both metrics. For this reason, in the main text,192

we focus on ARI due to its popularity in the literature [5] and V -measure because of its ability to balance193

the impact of over-clustering and under-clustering when evaluating recall, sc-SHC, CHOIR, and scAce.194
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Figure S1. Uniform manifold approximation and projection (UMAP) plots comparing clus-

tering results when the original gene expression data is reclustered using the resolution

parameter estimated by recall. On the left hand side, clustering is shown for the normal workflow
where recall finds the optimal resolution parameter for the Louvain algorithm (denoted as ς in the main
text) by using the combined data frame containing both the real gene expression matrix and the artificial
null variables X↑ = [X; X̃]. On the right hand side, the Louvain algorithm re-clusters on just the original
gene expression X once the resolution parameter is estimated via recall. The clusters obtained by
each method (even with the same resolution parameter) are di!erent — this is because the optimization
ultimately happens on di!erent sets of input data. Specifically, there were 8 clusters identified by recall
on the combined data frame (used for controlling calibration), but 9 clusters identified by the Louvain
algorithm with the same resolution when run only on the original data.
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Figure S2. (Continued on the following page).
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Figure S2. Demonstration of cases of over- and under-clustering in single-cell analyses. Here,
we generate synthetic data from a Gaussian mixture model. Data are created such that there are three
true groups. Panel (A) shows a depiction of the true cluster labels and the inferred cluster assignments
when an algorithm under- and over-clusters, respectively. For comparison, we also show an example of
definitions for (B) true positives, (C) true negatives, (D) false positives, and (E) false negatives used
by confusion matrix-based metrics.

Figure S3. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets using the adjusted Rand index (ARI). Each simulated dataset had five replicates and
consisted of 1, 5, and 10 groups with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The
two recall copula algorithms scaled exponentially with the number of cells and were not able to be
completed when N = 50K cells.
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Figure S4. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets using completeness. Each simulated dataset had five replicates and consisted of 1, 5, and 10
groups with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The two recall copula algorithms
scaled exponentially with the number of cells and were not able to be completed when N = 50K cells.

Figure S5. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets using homogeneity. Each simulated dataset had five replicates and consisted of 1, 5, and 10
groups with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The two recall copula algorithms
scaled exponentially with the number of cells and were not able to be completed when N = 50K cells.
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Figure S6. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets using the Jaccard index. Each simulated dataset had five replicates and consisted of 1,
5, and 10 groups with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The two recall copula
algorithms scaled exponentially with the number of cells and were not able to be completed when N =
50K cells.
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Figure S7. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets using the Fowlkes-Mallows index (FMI). Each simulated dataset had five replicates and
consisted of 1, 5, and 10 groups with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The
two recall copula algorithms scaled exponentially with the number of cells and were not able to be
completed when N = 50K cells.

Figure S8. Comparison of runtimes (in minutes) for recall, sc-SHC, CHOIR, and scAce on

simulated datasets. Each simulated dataset had five replicates and consisted of 1, 5, and 10 groups
with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The two recall copula algorithms scaled
exponentially with the number of cells and were not able to be completed when N = 50K cells.
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Figure S9. Comparison of peak memory usage (in gigabytes) for recall, sc-SHC, CHOIR, and
scAce on simulated datasets. Each simulated dataset had five replicates and consisted of 1, 5, and 10
groups with varying sample sizes of N = 5K, 10K, 25K, and 50K cells. The two recall copula algorithms
scaled exponentially with the number of cells and were not able to be completed when N = 50K cells.
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Figure S10. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets with rare cell types evaluated by the number of clusters detected. Each simulated
dataset had five replicates and consisted of five or ten cell types with varying sample sizes of N = 5K
and 10K cells. For each simulation, one cell type was chosen to be the rare cell type and was allocated
approximately 1% of all simulated cells. Each remaining cell type was sampled with approximately equal
proportions. The rare cell type was then simulated with 0.01, 0.02, 0.05, and 0.1 as its proportion of
di!erentially expressed genes, while the remaining cell types were simulated with 0.1 as their proportion
of di!erentially expressed genes. The correct number of cells is denoted by the dashed line. Perfect
performance is when a given bar is touching the dashed line. The point of this analysis is to identify the
threshold at which each method will no longer be able to detect the rare cell type.
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Figure S11. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets with rare cell types evaluated by adjusted Rand index (ARI). Each simulated dataset
had five replicates and consisted of five or ten cell types with varying sample sizes of N = 5K and
10K cells. For each simulation, one cell type was chosen to be the rare cell type and was allocated
approximately 1% of all simulated cells. Each remaining cell type was sampled with approximately equal
proportions. The rare cell type was then simulated with 0.01, 0.02, 0.05, and 0.1 as its proportion of
di!erentially expressed genes, while the remaining cell types were simulated with 0.1 as their proportion
of di!erentially expressed genes. The ARI is shown on the y-axis and perfect performance is 1.0. The
point of this analysis is to identify the threshold at which each method will no longer be able to detect
the rare cell type.
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Figure S12. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets with rare cell types evaluated by V -measure. Each simulated dataset had five replicates
and consisted of five or ten cell types with varying sample sizes of N = 5K and 10K cells. For each
simulation, one cell type was chosen to be the rare cell type and was allocated approximately 1% of all
simulated cells. Each remaining cell type was sampled with approximately equal proportions. The rare
cell type was then simulated with 0.01, 0.02, 0.05, and 0.1 as its proportion of di!erentially expressed
genes, while the remaining cell types were simulated with 0.1 as their proportion of di!erentially expressed
genes. The V -measure is shown on the y-axis and perfect performance is 1.0. The point of this analysis
is to identify the threshold at which each method will no longer be able to detect the rare cell type.
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Figure S13. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets with rare cell types evaluated by the number of clusters detected. Each simulated
dataset had five replicates and consisted of 5 or 10 cell types with varying sample sizes of N = 5K and
10K cells. Each cell type was sampled with approximately equal proportions. For each simulation, one
cell type was chosen to be the rare cell type. This cell type was then downsampled to 100, 150, and
200 cells (unless that involved going beyond the original number of cells for that cell type). The correct
number of cells is denoted by the dashed line. Perfect performance is when a given bar is touching the
dashed line. The point of this analysis is to identify the threshold at which each method will no longer
be able to detect the rare cell type.



20

Figure S14. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets with rare cell types evaluated by adjusted Rand index (ARI). Each simulated dataset
had five replicates and consisted of 5 or 10 cell types with varying sample sizes of N = 5K and 10K
cells. Each cell type was sampled with approximately equal proportions. For each simulation, one cell
type was chosen to be the rare cell type. This cell type was then downsampled to 100, 150, and 200 cells
(unless that involved going beyond the original number of cells for that cell type). The ARI is shown on
the y-axis and perfect performance is 1.0. The point of this analysis is to identify the threshold at which
each method will no longer be able to detect the rare cell type.
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Figure S15. Performance comparison of recall, sc-SHC, CHOIR, and scAce on simulated

datasets with rare cell types evaluated by V -measure. Each simulated dataset had five replicates
and consisted of 5 or 10 cell types with varying sample sizes of N = 5K and 10K cells. Each cell type
was sampled with approximately equal proportions. For each simulation, one cell type was chosen to be
the rare cell type. This cell type was then downsampled to 100, 150, and 200 cells (unless that involved
going beyond the original number of cells for that cell type). The V -measure is shown on the y-axis and
perfect performance is 1.0. The point of this analysis is to identify the threshold at which each method
will no longer be able to detect the rare cell type.
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Figure S16. Performance comparison of each variant of the recall algorithm, sc-SHC, CHOIR,
and scAce using the adjusted Rand index (ARI) for each tissue in the Tabula Muris dataset.
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Figure S17. Performance comparison of each variant of the recall algorithm, sc-SHC, CHOIR,
and scAce using V -measure for each tissue in the Tabula Muris dataset.
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Figure S18. Performance comparison of each variant of the recall algorithm, sc-SHC, CHOIR,
and scAce using completeness for each tissue in the Tabula Muris dataset.
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Figure S19. Performance comparison of each variant of the recall algorithm, sc-SHC, CHOIR,
and scAce using homogeneity for each tissue in the Tabula Muris dataset.



26

Figure S20. Performance comparison of each variant of the recall algorithm, sc-SHC, CHOIR,
and scAce using the Jaccard index for each tissue in the Tabula Muris dataset.
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Figure S21. Performance comparison of each variant of the recall algorithm, sc-SHC, CHOIR,
and scAce using the Fowlkes-Mallows index (FMI) for each tissue in the Tabula Muris

dataset.
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Figure S22. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the aorta tissue from the Tabula Muris

study.
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Figure S23. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the bladder tissue from the Tabula

Muris study.
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Figure S24. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the Brain myeloid tissue from the

Tabula Muris study.



31

Figure S25. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the Brain non-myeloid tissue from the

Tabula Muris study.
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Figure S26. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the diaphragm tissue from the Tabula

Muris study.
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Figure S27. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the fat tissue from the Tabula Muris

study.
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Figure S28. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the heart tissue from the Tabula Muris

study.
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Figure S29. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the kidney tissue from the Tabula

Muris study.
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Figure S30. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the large intestine tissue from the

Tabula Muris study.
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Figure S31. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the limb muscle tissue from the Tabula

Muris study.
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Figure S32. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the liver tissue from the Tabula Muris

study.
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Figure S33. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the lung tissue from the Tabula Muris

study.
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Figure S34. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the mammary gland tissue from the

Tabula Muris study.
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Figure S35. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the bone marrow tissue from the

Tabula Muris study.
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Figure S36. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the pancreas tissue from the Tabula

Muris study.
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Figure S37. Uniform manifold approximation and projection (UMAP) plots illustrating the

manually curated cell ontology class labels compared to the inferred clustering results for

recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the skin tissue from the Tabula Muris

study.
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Figure S38. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the spleen tissue from the Tabula

Muris study.
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Figure S39. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the thymus tissue from the Tabula

Muris study.
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Figure S40. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the tongue tissue from the Tabula

Muris study.
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Figure S41. Uniform manifold approximation and projection (UMAP) plots illustrating

the manually curated cell ontology class labels compared to the inferred clustering results

for recall+ZIP, sc-SHC, CHOIR, and scAce when analyzing the trachea tissue from the Tabula

Muris study.
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Figure S42. Performance comparison of recall, sc-SHC,CHOIR and scAce showing the per-

centage of tissues in the Tabula Muris dataset where the number of clusters inferred by

each method matched the exact number curated cell type groups in the study. Here, recall
matched the correct number of clusters in 3 tissues (aorta, diaphragm, and limb muscle), sc-SHC matched
the correct number of clusters in 1 tissue (mammary gland), while CHOIR and scAce both matched the
correct number of clusters in 0 tissues.
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Figure S43. Simulation of rare cell type detection in Tabula Muris tissues. (a) Uniform
manifold approximation and projection (UMAP) plot showing the limb muscle tissue cells before any
downsampling was performed. The circled cell type, macrophages, were selected to be downsampled
because they were the cell type with the fewest number of cells (31). (B) UMAP plot showing the limb
muscle tissue cells after downsampling was performed on the circled cell type, macrophages. This cell type
was downsampled to 5, 10, 15, 25, and 30 cells and analyzed by each clustering method. Depicted here is
a UMAP with 5 macrophages. (C) The number of clusters detected by each method on the downsampled
limb muscle datasets. Perfect performance is when a given bar is touching the dashed line. The point
of this analysis is to identify the threshold at which each method will no longer be able to detect the
macrophages. For recall this threshold was 20 cells and for sc-SHC this threshold was 25 cells. CHOIR
and scAce sometimes found more clusters after downsampling. (D) UMAP plot showing the diaphragm
tissue cells before any downsampling was performed. The circled cell type, T cells, were selected to be
downsampled because they were the cell type with the fewest number of cells (35). (E) UMAP plot
showing the diaphragm tissue cells after downsampling was performed on the circled cell type, T cells.
This cell type was downsampled to 5, 10, 15, 25, and 30 cells and analyzed by each clustering method.
Depicted here is a UMAP with 5 T cells. (F) The number of clusters detected by each method on the
downsampled diaphragm datasets. Perfect performance is when a given bar is touching the dashed line.
The point of this analysis is to identify the threshold at which each method will no longer be able to
detect the T cells. For recall this threshold was 20 cells (although recall also did not detect the T
cell cluster with 25 cells). sc-SHC, CHOIR, and scAce sometimes found more clusters after downsampling.
and sometimes found two clusters less than they started with.
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Figure S44. (Continued on the following page).
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Figure S44. Di!erential expression results for recall+ZIP compared to countsplit and

ClusterDE, which provide calibrated statistical tests for double-dipping. (A) Uniform mani-
fold approximation and projection (UMAP) plots of the manually curated cell ontology class labels, the
default clusters from Seurat (used by ClusterDE), the cluster labels obtained by recall+ZIP, and the
cluster labels obtained by countsplit. (B) Scatter plot and corresponding Pearson correlation coe”-
cient (r) of the -log10P -values for all genes being tested for di!erential expression between countsplit
clusters 0 and 1 and for recall+ZIP clusters 0 and 1 (both pairs correspond to skeletal muscle satellite
cells and mesenchymal stem cells, respectively). (C) Scatter plot and corresponding Pearson correlation
coe”cient (r) of the -log10q-values for all genes being tested for di!erential expression by ClusterDE
between default Seurat clusters 0 and 1 and the -log10P -values for recall+ZIP clusters 0 and 1 (both
pairs correspond to skeletal muscle satellite cells and mesenchymal stem cells, respectively). (D) Scatter
plot and corresponding Pearson correlation coe”cient (r) of the -log10P -values for all genes being tested
for di!erential expression between countsplit clusters 0 and 1 and for recall+ZIP clusters 0 and 1.
Here, the recall+ZIP clusters had been downsampled such that they were of equal size to the clusters
used in countsplit (both pairs correspond to skeletal muscle satellite cells and mesenchymal stem cells,
respectively). Notice that the y = x line in this comparison better aligns with both algorithms, indicating
that any additional significance seen in the -log10P -values from recall+ZIP in panel B is likely due to
the increased sample size of each cluster. This also means that the P -values obtained by testing for
di!erential expression with recall+ZIP closely match what would be seen if the cell types were known
a priori. This is because the recall+ZIP clusters align better the curated labels in panel A. (E) Venn
diagram displaying the overlap of statistically significant marker genes found between the comparisons
made in (B) and (C). ClusterDE tests at a false discovery rate (FDR) of 0.05, while recall+ZIP and
countsplit utilize a more strict Bonferroni correction threshold.
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Figure S45. Performance comparison of recall, clusterDE, and countsplit to detect truly

di!erentially expressed genes on simulated datasets with two cell types. Each simulated
dataset had five replicates and consisted of N = 1K cells and G = 1K genes. We considered three
di!erent scenarios where we split the cells into 90/10, 70/30, and 50/50 groups of two. The y-axis labels
represent the percentage of the less dominant group. Each cell type was simulated such that it had 0.1,
0.2, 0.3, 0.4, and 0.5 proportion of its total genes be di!erentially expressed. Shown are the precision,
recall (sensitivity), and F1 score for each method. Perfect performance is 1.0 for each metric. When the
proportion of di!erentially expressed genes was low, the FindClusters function in Seurat would often
over-cluster when paired with countsplit.
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Figure S46. Average runtime comparison of recall+ZIP, sc-SHC, CHOIR, and scAce in four

additional single-cell studies of varying sizes. Each method was run on a machine with 16 cores.
The datasets analyzed include (A) the PBMC 3K (N = 2,700 cells), (B) the human liver data from
MacParland et al. [9] (N = 8,444 cells), and (C, D) the SeuratData bone marrow datasets (N = 30,672
and N = 40,000 cells, respectively). We run each method on each dataset 5 times; depicted in each bar
plot is the mean ± the standard deviation across all runs.
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Figure S47. Comparison of peak memory usage (in gigabytes; GB) for recall+ZIP, sc-SHC,
CHOIR, and scAce on four additional single-cell studies of varying sizes. Each method was run
on a machine with 16 cores. The datasets analyzed include (A) the PBMC 3K (N = 2,700 cells), (B)

the human liver data from MacParland et al. [9] (N = 8,444 cells), and (C, D) the SeuratData bone
marrow datasets (N = 30,672 and N = 40,000 cells, respectively). We run each method on each dataset
5 times; depicted in each bar plot is the mean ± the standard deviation across all runs.
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Figure S48. Average runtime comparison of recall+ZIP, sc-SHC, CHOIR, and scAce as a

function of the number of cells in a study. Here, we take subsets of the 68,579 total peripheral
blood mononuclear cells (PBMCs) provided by Zheng et al. [10] which included smaller datasets of size
1K, 2K, 5K, 10K, 20K, 30K, 40K, 50K, and 60K cells. Each method was run on a machine with 16 cores.
We run each method on each dataset 5 times; depicted are the mean ± the standard deviation across all
runs.
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Figure S49. Comparison of peak memory usage (in gigabytes; GB) for recall+ZIP, sc-SHC,
CHOIR, and scAce as a function of the number of cells in a study. Here, we take subsets of the
68,579 total peripheral blood mononuclear cells (PBMCs) provided by Zheng et al. [10] which included
smaller datasets of size 1K, 2K, 5K, 10K, 20K, 30K, 40K, 50K, and 60K cells. Each method was run on
a machine with 16 cores. We run each method on each dataset 5 times; depicted are the mean ± the
standard deviation across all runs.
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