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ABSTRACT

In this article, we establish the mathematical foundations for modeling the randomness of shapes and
conducting statistical inference on shapes using the smooth Euler characteristic transform. Based on these
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foundations, we propose two Chi-squared statistic-based algorithms for testing hypotheses on random

shapes. Simulation studies are presented to validate our mathematical derivations and to compare our
algorithms with state-of-the-art methods to demonstrate the utility of our proposed framework. As real
applications, we analyze a dataset of mandibular molars from four genera of primates and show that our
algorithms have the power to detect significant shape differences that recapitulate known morphological
variation across suborders. Altogether, our discussions bridge the following fields: algebraic and computa-
tional topology, probability theory and stochastic processes, Sobolev spaces and functional analysis, analysis
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of variance for functional data, and geometric morphometrics. Supplementary materials for this article are
available online, including a standardized description of the materials available for reproducing the work.

1. Introduction

The quantification of shapes has become an important research
direction. It has brought advances to many fields including
geometric morphometrics (Boyer et al. 2011; Gao, Kovalsky, and
Daubechies 2019; Gao et al. 2019), biophysics and structural
biology (Wang et al. 2021; Tang et al. 2022), and radiogenomics
(Crawford et al. 2020). When shapes are considered as random
variables, their corresponding quantitative summaries are also
random, implying that such summaries of random shapes are
statistics. The statistical inference on shapes based on these
quantitative summaries has been of particular interest (Fasy et al.
2014; Roycraft, Krebs, and Polonik 2023).

In this article, we bring together mathematical and statistical
approaches to make three significant contributions to shape
statistics: (i) we provide mathematical foundations for the ran-
domness of shapes encountered in applications, bridging alge-
braic topology (Hatcher 2002) and stochastic processes (Hairer
2009); (ii) we connect the statistical inference on shape-valued
data to the well-studied analysis of variance for functional data
(fdANOVA, Zhang 2013), bridging topological data analysis
(TDA, Edelsbrunner and Harer 2010) and functional data anal-
ysis (FDA, Hsing and Eubank 2015); and (iii) our framework
does not rely on any assumptions about diffeomorphisms or pre-
specified landmarks.

1.1. A Motivating Scientific Question

Through modeling the randomness of shapes, we aim to address
the following statistical inference question: Is the observed

difference between two groups of shapes statistically significant?
For example, the mandibular molars in Figure 1 are from four
genera of primates. A pertinent question from a morphological
perspective is: In Figure 1, do the molars from genus Tarsius
exhibit significant differences from those from the other genera?
The primary objective of this article is to propose a powerful
approach for testing hypotheses on random shapes. This would
help address morphology-motivated statistical inference ques-
tions like the one raised above. In achieving this objective, we lay
down the mathematical foundations that justify our hypothesis
testing methods. We take two key steps: In Step 1, we find the
appropriate representations of shapes; and in Step 2, we test
hypotheses on shapes using these representations. In Section 1.2,
we provide a literature review on shape representations and
introduce the topological summary employed in this article. Sec-
tion 1.3 begins by presenting the main theme of our hypothesis
testing approach, followed by an overview of our contributions.
Since the molars in Figure 1 are diffeomorphic to the two-
dimensional unit sphere, some existing diffeomorphism-related
methods can be considered for representing the molars (e.g.,
parameterized surfaces; Kurtek et al. 2011). In contrast, we aim
to propose an approach that does not rely on any diffeomorphic
assumptions, allowing for a wider range of applications.

1.2. Overview of Shape and Topological Data Analysis

In classical geometric morphometrics, shapes are represented
using prespecified points called landmarks (Kendall 1989). The
manual landmarking of a collection of shapes requires domain
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Figure 1. Left: Molars from two suborders of the primates: Haplorhini and Strepsirrhini. The Haplorhini suborder has genera Tarsius (yellow) and Saimiri (grey). The
Strepsirrhini suborder has genera Microcebus (blue) and Mirza (green). Right: Relationship between the four primate genera. Tarsier molars exhibit additional high cusps

(highlighted in red). A similar figure was published in Wang et al. (2021).

knowledge, can be very labor intensive, and is subject to bias
(Boyer et al. 2011). Furthermore, an equal number of landmarks
must be selected for each shape in a study in order to make
comparisons (e.g., the Procrustes framework discussed in sec.
2.1 of Gao et al. 2019). This necessitates comprehensive infor-
mation about entire collections of shapes for consistency, which
can be difficult to obtain (e.g., landmarking cancer tumors,
which can have very different morphology across a population
of patients). Unfortunately, many datasets do not come with
prespecified landmarks (e.g., Goswami 2015). Although many
algorithms can automatically sample reasonable landmarks on
shapes when their parameters are fine-tuned (e.g., Gao et al.
2019; Gao, Kovalsky, and Daubechies 2019), using a finite num-
ber of landmarks extracted from a continuum inevitably results
in the loss of information. Diffeomorphism-based approaches
(Dupuis, Grenander, and Miller 1998; Gao et al. 2019) are part of
the “computational anatomy” that was historically studied by the
“pattern theory school” pioneered by Ulf Grenander (Grenander
and Miller 1998). They enable the comparison of (dis-)similarity
between shapes with benefit of bypassing the need for land-
marks. However, these approaches are based on the assump-
tion that the shapes being compared are diffeomorphic to one
another, making them unsuitable for many datasets (e.g., fruit
fly wings in Miller 2015). Furthermore, parameterized curves
and surfaces (PCS) provide a toolbox for assessing the hetero-
geneity of shapes with summary statistics that are invariant to
reparameterizations (Kurtek et al. 2010, 2011, 2012). Despite
their effectiveness in analyzing real data (e.g., DT-MRI brain
fibers; Kurtek et al. 2012), PCS are based on assumptions about
the diffeomorphism types of the shapes of interest. For example,
Kurtek et al. (2011) focuses on surfaces that are diffeomorphic
to the two-dimensional unit sphere.

TDA opens the door for landmark-free and diffeomorphism-
free representations of shapes. Motivated by differential topol-
ogy, Turner, Mukherjee, and Boyer (2014) proposed the per-
sistent homology transform (PHT) with the capability to suffi-
ciently encode all information within shapes (Ghrist, Levanger,
and Mai 2018). To describe the PHT, we briefly provide some
basics of TDA. One common statistical invariant in TDA is
the persistence diagram (PD, Edelsbrunner and Harer 2010).
When equipped with the Wasserstein distance, the collection of
PDs, denoted as 2, is a Polish space (Mileyko, Mukherjee, and

Harer 2011). Thus, probability measures can be applied, and the
randomness of shapes can be represented using the probabil-
ity measures on 2. The PHT takes values in c(s*1 94 =
{continuous maps F S4-1 — 29} where S9! denotes
the sphere {x € R4 x|l 1} and 29 is the d-
fold Cartesian product of & (Turner, Mukherjee, and Boyer
2014, Lemma 2.1 and Definition 2.1). A single PD does not
preserve all information of a shape (Crawford et al. 2020).
In contrast, the PHT is injective, which means it preserves
all the information of a shape. However, since Z is not a
vector space and the distances on & are abstract (e.g., the
Wasserstein and bottleneck distances, Cohen-Steiner et al.
2007), many fundamental statistical concepts do not easily
apply to summaries resulting from the PHT. For example, the
definition of moments corresponding to probability measures
on 7 (e.g., means) is highly nontrivial (Mileyko, Mukherjee,
and Harer 2011). The difficulty in defining these concepts
hinders the application of PHT-based statistical methods in
C(S41; 2.

The smooth Euler characteristic transform (SECT, Crawford
et al. 2020) offers an alternative summary statistic for shapes.
The SECT not only preserves the information of shapes (Ghrist,
Levanger, and Mai 2018, Corollary 1) but also represents shapes
using continuous functions instead of PDs. More precisely, the
values of the SECT are maps from the sphere S*~! to a separable

Banach space B C([0, T]), the collection of continuous
functions on a compact interval [0, T] (values of T will be
given in (3.1)). Hence, for any shape K, its SECT, denoted as
{SECT(K)(v)}, cgi-1, lies in B = {maps F : $*1 — B}.
Specifically, SECT(K)(v) belongs to B for each v € S~ 1. As a
result, the randomness of shapes K is represented via the SECT
by a collection of B-valued random variables. Probability theory
in separable Banach spaces is better developed than in Z (e.g.,
Hairer 2009). In particular, a B-valued random variable is a
stochastic process with its sample paths in 3. As we will demon-
strate in Section 3, BB here can be replaced with a reproducing
kernel Hilbert space (RKHS). The theory of stochastic processes
has evolved over a century and FDA is a well-developed branch
of statistics. Consequently, a myriad of tools are available to
underpin both the randomness of shapes and the statistical
inference on shapes.
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From an application perspective, Crawford et al. (2020)
applied the SECT to magnetic resonance images taken from
tumors in a cohort of glioblastoma multiforme (GBM) patients.
Using summary statistics derived from the SECT as predictors
within Gaussian process regression, the authors demonstrated
that the SECT can predict clinical outcomes more effectively
than existing tumor shape quantification approaches and com-
mon molecular assays. The relative performance of the SECT
in the GBM study suggests a promising future for its utility in
medical imaging and broader statistical applications related to
shape analyses. Similarly, Wang et al. (2021) used derivatives of
the Euler characteristic transform (ECT) as predictors in statisti-
cal models for subimage analysis. This analysis is akin to variable
selection, aiming to identify physical features that are important
for distinguishing between two classes of shapes. Lastly, Marsh
etal. (2022) highlighted that the SECT outperforms the standard
measures employed in organoid morphology.

1.3. Overview of Contributions and Article Organization

Our goal is to address the hypothesis testing question posed in
Section 1.1 by employing a landmark-free and diffeomorphism-
free approach, which opens up possibilities for further applica-
tions in the future. We formulate the question more generically
here. Let PV and P® be two distributions that generate two
collections of random shapes, {Ki(l) ., and {Ki(z) }7_,. Detecting

whether there is a significant difference between {K ,'(1)}?:1

{Ki(z)}l*‘:1 is equivalent to rejecting the hypothesis P(V = P®?),

and

Since each shape Ki(] ) is random, SECT(KI.(’ )) is a random vari-
able taking values in a vector space (as discussed in Section 1.2)
and can be decomposed as follows (see Theorem 5.1 for a
rigorous version)

SECT(KI.O)) = m" + random terms, forj e {1,2}, (1.1)

where m¥) denotes the mean of SECT(Ki(’ )) with respect to
the distribution P%. The random terms in (1.1) can be char-
acterized by the Karhunen-Loéve (KL) expansion (Hsing and
Eubank 2015, sec. 7.3). To reject PV = P, it suffices to
reject m) = m@. That is, the question posed in Section 1.1
can be addressed by testing for the equality of two means. The
important component of the test is the variance represented by
the random terms in (1.1). In Section 5, we formulate this test as
a two-sample problem in the f{d ANOVA literature (Zhang 2013,
sec. 5.2). In addition, using the KL expansion, we provide a x -
statistic in Section 5 to test the hypothesis. Throughout the arti-
cle, our focus is on the two-sample problem. However, one may
also consider employing the one-way f{dANOVA to compare
the means of three or more groups of shapes. The theoretical
foundation and numerical experiments for this aspect are left
for future research.

To develop our framework, we have to address the following
mathematical foundation related questions: (i) What underlying
probability spaces allow the randomness of shapes and their corre-
sponding SECT? and (ii) Are the conditions of the KL expansion
satisfied in our setting? We answer these questions in Sections 3
and 4—we model the randomness of shapes via the SECT using
RKHS-valued random fields. The “theory of random sets” is a

well-established framework for characterizing set-valued ran-
dom variables (Molchanov 2005). However, its application to
persistent homology-based statistics (e.g., the SECT) remains
underexplored. In this article, we introduce a new probability
space to characterize the randomness of shapes in a manner
compatible with the SECT.

We first propose a collection of shapes as our sample space
on which the SECT is well-defined. We then demonstrate that
every shape in this collection has its SECT in CSTLH) =
{continuous maps F : S41 > H}, where H = Hé([O, T1]) is not
only a Sobolev space (Brezis 2011) but also an RKHS (reasons for
using [0, T] instead of (0, T) for H} ([0, T]) are in Appendix A.1).
Importantly, C(S~1; ) is a separable Banach space (Theorem
C.1) and, hence, a Polish space. It helps construct a probability
space to characterize the distributions of shapes. Building on
this probability space, we define the mean and covariance of the
SECT. Using the Sobolev embedding, we present some proper-
ties of the mean and covariance, which pave the way for the KL
expansion of the SECT.

Traditionally, the statistical inference on shapes in TDA is
conducted in the persistence diagram space &, which is unsuit-
able for exponential family-based distributions and requires any
corresponding statistical inference to be highly nonparametric
(Fasy et al. 2014; Robinson and Turner 2017). The PHT-based
statistical inference in C(S9~!; 27) is even more difficult. With
the KL expansion of the SECT, we propose a yx2-statistic for
testing hypotheses on shapes. Beyond the mathematical foun-
dations, we also provide simulation studies to illustrate the
performance of our proposed hypothesis testing method. Lastly,
we apply our proposed framework to answer the motivating
question raised in Section 1.1.

We organize this article as follows. In Section 2, we provide
the mathematical preparations. In Section 3, we define the SECT
for a specific collection of shapes, highlighting its properties.
In Section 4, we construct a probability space to model shape
distributions. In Section 5, we propose the KL expansion of
the SECT, leading to a statistic for hypothesis testing. In Sec-
tion 6, we conduct simulation studies to evaluate our method.
In Section 7, we apply our method to real data. In Section 8,
we conclude the article. The Appendix provides the proofs of
theorems, further data analysis, and future research topics.

2. Notations and Mathematical Preparations

To model the shapes discussed in our motivating question from
Section 1.1, we need certain preparations regarding (i) topology
and (ii) function spaces.

Topology. The first question we must address is: What are the
“shapes” in our framework? Ghrist, Levanger, and Mai (2018) and
Curry, Mukherjee, and Turner (2022) applied o-minimal struc-
tures (van den Dries 1998) to prove the injectivity of the PHT.
Subsequent to this, o-minimal structures have been applied in
many TDA studies to model shapes (e.g., Jiang, Kurtek, and
Needham 2020; Kirveslahti and Mukherjee 2023). To stay con-
sistent with the existing literature, we also model shapes using
o-minimal structures. An o-minimal structure is a sequence
S = {Sn}u>1 of subset collections S, < 2R satisfying six set-
theoretical axioms, where 2&" denotes the power set of R”. The



precise definition of o-minimal structures is available in van den
Dries (1998) and is provided in Appendix A.3 for the reader’s
convenience.

A typical example of o-minimal structures is the collection
of semialgebraic sets. Specifically, a set K € R”" is semialgebraic
if it can be expressed as a finite union of sets of the form {x €
R"| p(x) =0, q1(x) > 0, ..., qk(x) > 0}, where p,q1,...,qk
are polynomial functions on R”. If we define S, as the collection
of semialgebraic subsets of R”, then S = {S,}s>1 is an o-
minimal structure (van den Dries 1998, chap. 2). The unit sphere
s4-1, open ball B(O,R) = {x € RY||x> < R?} for any
R > 0, and all polyhedra (e.g., polygon meshes in computer
graphics) are semialgebraic, given that they can be represented
using either the polynomial ||x||? or affine functions. We assume
the following:

Assumption 1. The o-minimal structure S of interest contains
all semialgebraic sets.

Hereafter, a “shape” refers to a compact set K € [J,-; Su
for a prespecified o-minimal structure S = {S,}u>1 satis-
fying Assumption 1. Assumption 1 incorporates many com-
mon shapes (e.g., balls and polyhedra) in our framework. More
importantly, it implies the subsequent Theorem 2.1 through the
“triangulation theorem” (van den Dries 1998, chap. 8). Although
the definition of an o-minimal structure S is highly abstract (see
Appendix A.3), each compact set in S resembles a polyhedron,
which is precisely stated as follows.

Theorem 2.1. Suppose S = {Sy}n>1 is an o-minimal structure
satisfying Assumption 1 and K € (J,»; Sy. If K is compact,
there exists a finite simplicial complex S such that the polyhe-

def . .
dron |§| = (Uses § is homeomorphic to K, where each s € S
denotes a simplex.

Herein, a finite simplicial complex § is a finite collection of
simplexes. Each face of a simplex s € S also belongs to S (i.e., S
is a so-called “closed complex” referred to in chap. 8 of van den
Dries 1998). Theorem 2.1 directly results from the “triangulation
theorem” (van den Dries 1998); hence, its proof is omitted.
For the dth component Sy of S = {Su}u>1, Theorem 2.1
indicates that the compact sets K € Sy are subsets of RY
that are homeomorphic to polyhedra. Theorem 2.1 also implies
that the homology groups of each compact K € S; are well-
defined and finitely generated; hence, the Betti numbers and
Euler characteristic of K are well-defined and finite (Hatcher
2002, chap. 2).

Function Spaces. We apply the following notations throughout
this article:

(i) For any normed space V, let || - ||y denote its norm. Denote
| - llga as || - || for succinctness.

(i) Let X be a compact metric space equipped with
metric dx, and let V denote a normed space. C(X;V)
is the collection of continuous maps from X to V.
Furthermore, C(X;V) is a normed space equipped with

Ifllcey) = sup,ey lIf(x)|lv. The Holder space O3 (X; V) is

defined as {f e C(X;V) ‘ SUP. yeX, xoty (%) < oo}
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Here, oz (X;V) is a normed space equipped with
T HESTOAY
Cr2(X5V) A dx (%)
Obviously, CO’%(X; V) € C(X;V). For simplicity, we denote
C(X) = C(X;R) and C*2 (X) = C®2(X;R). Foragiven T > 0
(e.g., see (3.1)), we denote C([0, T]) as 5.

(iii) The inner product of H = H}(0,T]) = {f €
L*([0,1]) | f* € L*([0,T]) and f(0) = f(T) = 0} is defined as
(f.8) = fOTf’(t)g/(t) dt (Brezis 2011, chap. 8.3, Remark 17).
(iv) Suppose (Y, dy) is a metric space (not necessarily compact).
Both #(Y) and %(dy) denote the Borel algebra generated by
the metric topology corresponding to dy.

(v) {F(2)};cz denotes a function F defined on the set Z.

The following inequalities are useful for deriving many results
presented in this article

Ifls < IIfIl

= Ifllcosy) + supyyex,xzy

< Crlflla, forallf e H,

O3 ([0,T]) — 2D

where Cr is a constant depending only on T. The first inequality

in (2.1) results from the definition of || - || ;1 , while the
C 2([0,T])

second inequality is from Brezis (2011) (Corollary 9.14; also
see Appendix L.2). Equation (2.1) implies the following Sobolev
embedding

def def

HY 0, T € 7 c 2o, Ty < BY o, 1. (22)

3. Smooth Euler Characteristic Transform

In this section, we give the background on the SECT and propose
corresponding mathematical foundations. Notably, we specify
the “sample space”—a collection of shapes on which the SECT
is well-defined. The SECT of the shapes in this sample space has
properties that are suitable for the probability theory developed
in Section 4. The molars in the motivating question from Sec-
tion 1.1 will be modeled as elements of the sample space.

Suppose an o-minimal structure S = {S,}n>1 satisfying
Assumption 1 is given, and we focus on shapes in d-dimensional
space R?. We assume the shape K € Sy is compact and K C
B(O,R) = {x € R? : |x|| < R}, for example, the K C R?
in Figure 2 or the surfaces of the mandibular molars in R3
as presented by Figure 1. For each direction v € S%1, we
define a filtration {K} }sc[o, 1] of sublevel sets by the following (see
Figure 2 for an illustration)

K’ ey eK|x-v<t—R), forallte[0,T],

where T def 2R. (3.1)

We then have the following Euler characteristic curve (ECC,
denoted as x;’) in direction v

x. (K) 4 the Euler characteristic of K} = x(K})

d—1
=Y (=D* - B(KY),
k=0
for t € [0, T], where Br(K}) is the kth Betti number of K. The

sum in (3.2) ends at d — 1 because higher homology groups
are trivial (Curry, Mukherjee, and Turner 2022, sec. 4). If K}

(3.2)
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K K

3.0
25
2.0
1.5 x
S
1.0 \,e\\e\
0.5

000

Figure 2. Consider the two-dimensional shape K € S; in the left panel. For each pair of v and t, the equation x - v = t — R represents a straight line (or a hyperplanein a
high-dimensional space). The subset K’ denotes the region below this line. Let ¢, (x) = x - v 4 R, then K}’ = {x € K| ¢, (x) < t}. The right panel presents the function

(v, ) > SECT(K)(v,t), where v € S' is identified by 6 € [0,27] through v = (cos@,sin8). Procedures for generating the shape K and the right panel are given in

Appendix D.1.

is a triangle mesh, x(K;) = #V — #E + #F, where #V, #E,
and #F denote the number of vertices, edges, and faces of the
mesh, respectively. Due to Theorem 2.1, the compactness of K
guarantees that the Betti numbers in (3.2) are well-defined and
finite.

The Euler characteristic transform (ECT) defined as
ECT(K) : S ! — 7ZI0Tl s {x! (K)}te[o,r] was proposed
by Turner, Mukherjee, and Boyer (2014) as an alternative to the
PHT. Based on the ECT, Crawford et al. (2020) further proposed
the SECT as follows

SECT(K) : S9! — RI®T],
v > SECT(K)(v) = {SECT(K)(v, D) }yejo.17»

t t T
[ xaode -1 [

0 T Jo
(3.3)

A visualization of the function (v,t) + SECT(K)(v,t) is
presented in Figure 2. The following lemma implies that the
Lebesgue integrals in (3.3) are well-defined.

where SECT(K)(v,t) &

Lemma 3.1. For any fixed K € Syand v € S%1, the function
t = x(K}) is piecewise constant with only finitely many
discontinuities.

Through the “cell decomposition theorem” (van den Dries 1998,
chap. 3), Lemma 3.1 directly follows from either Lemma 3.4 of
Curry, Mukherjee, and Turner (2022) or “(2.10) Proposition”
in Chapter 4 of van den Dries (1998). Hence, the proof of
Lemma 3.1 is omitted.

To investigate the distribution of SECT(K) over different
shapes K, we introduce the following condition to restrict our
attention to a subset of S,.

Condition 3.1. Let K € S;. The condition is that K satisfies the
following inequality

M
P [ sup (#{ € Dgmy (K5 4,) | pers(&) > 0})} <= ()
ke{0,...,d—1} | yeSd-1

where Dgm, (K; ¢,) is the PD of K associated with the function
¢y (x) = x-v+ R (also see Figure 2), pers(£) is the persistence of

the homology feature &, #{-} denotes the cardinality of a multiset,
and M > 0 is a sufficiently large prespecified number.

Condition 3.1 involves technicalities from computational topol-
ogy (Edelsbrunner and Harer 2010). To maintain the flow of
the article, we relegate the details of this condition, as well as
the definitions of Dgm, (K;¢,) and pers(£), to Appendix B.
Heuristically, Condition 3.1 implies the existence of a uniform
upper bound on the number of nontrivial homology features of
K across all directions v. Hereafter, we focus on shapes in the
following collection

Sg’[d def {K e Sy | K <€ B(0, R) is compact and satisfies
Condition 3.1 with fixed M > 0}.

Our proposed collection Sﬁ’f ;1 is suitable for modeling shapes
in many applications. For example, the surfaces of the molars in
Figure 1 are compact subsets of R?, bounded by a common open
ball, and can be approximately represented by triangle meshes
(hence, modeled by an o-minimal structure satisfying Assump-
tion 1). In addition, the four genera of primates in Figure 1
share a phylogentic relationship which implies that their molars
have common baseline features and satisfy Condition 3.1 with
a shared upper bound M. In each application, the dimension d
and radius R of the ball B(0, R) can easily be determined based
on observed shapes. Although our mathematical framework
requires the existence of such an M in (3.4), the value of M
is not needed for our statistical methodology (see Section 5).
Thus, Condition 3.1 does not hinder our proposed statistical
methodology.

Lemma 3.1 implies that the function {x;(K)}sejo,r; of t
belongs to L!([0, T]). Therefore, the function SECT(K)(v) =
{SECT(K) (v, t)}te[o,1] of t is absolutely continuous on [0, T].
Furthermore, we have the following regularity result of the
Sobolev type.

Lemma 3.2. Forany K € Spl and v € S91, the function
SECT(K)(v) belongs to .



Lemma 3.2 is a special case of Lemma C.3. It indicates
SECT(S d) c 1 = = {allmaps F : S9~! — #}, which is
enhanced by the following result.

Theorem 3.2. For each K € SR > we have: (i) There exists a
constant Cy, p ; depending only on M, R, and d such that the

following inequality holds for any directions vy, v, € S%71,
[ SECT(K)(v1) — SECT(K)(v2) ll94

< Cyrpa Vv —vall + vr — w3

(3.5)

and (ii) SECT(K) € o (S91; ), where S is equipped with
the geodesic distance dga-1.

Results complementary to Theorem 3.2 can be found in Theo-
rem C.3, which imply that the function (v, ) > SECT(K)(v, t)
belongs to %3 (S% ! x [0, T]). Theorem 3.2(i) is an ana-
log of Lemma 2.1 in Turner, Mukherjee, and Boyer (2014).
Theorem 3.2(ii) implies SECT(S{{Id) C CO’%(Sd_l;'H) -

C(S4LH) C ’HSﬂli1 . Asaresult, (3.3) defines the following map

SECT: Spl, — C(S™™; H), K+ SECT(K).  (3.6)

In Appendix D.1, we provide detailed proof-of-concept exam-
ples (similar to Figure 2) to visually illustrate the SECT and
support the regularity results in Theorems 3.2 and C.3.

Corollary 1 of Ghrist, Levanger, and Mai (2018) implies the
following result, which shows that the SECT preserves all the
information of shapes K € Sf{ld

Theorem 3.3. The map SECT defined in (3.6) is injective for all
dimensions d.

The map SECT : SMd — C(S*;H) is injective, but not
surjective. Specifically, Theorem 3 2 suggests that the image of

SECT does not lie outside of C*2 (S"1;H). An explicit char-
acterization of the image SECT(Sg)I ;) remains a topic for future
research.

Inspired by Theorem 3.3, one may consider reconstructing
a shape K from either the SECT(K) or the ECT(K). From a
theoretical standpoint, a shape K can be reconstructed using the
“Schapira’s inversion formula” (Schapira 1995). Further details
are available in Ghrist, Levanger, and Mai (2018). From an
algorithmic perspective, the proof of Theorem 3.1 in Turner,
Mukherjee, and Boyer (2014) offers an algorithm to reconstruct
low-dimensional meshes from their ECT. Nevertheless, effective
algorithmic approaches to reconstructing shapes are still under-
developed. Challenges in reconstructing shapes are extensively
discussed in Fasy et al. (2018). A comprehensive exploration of
the reconstruction using SECT is also left for future research.

Together with (3.6), Theorem 3.3 allows us to represent
each K € SM by SECT(K) € C(S%~';H). This perspective
aids us in modehng the randomness of shapes using prob-
ability measures on the separable Banach space C(S?~1;%).
Here, we prefer C(S9~1;H) over l-Hélder space C* 3 (81 H).
This is because ——Holder spaces are typically not separable
(Hairer 2009, Remark 4.21). The separability condition is essen-
tial for probability measures on Banach spaces to exhibit non-
pathological behavior (Hairer 2009, sec. 4).

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION . 503

4. Probabilistic Distributions over the SECT

To address the motivating question outlined in Section 1.1 using
hypothesis testing, we need to view the observed shapes (e.g.,
the molars in Figure 1) as shape-valued random variables. In
this section, we construct a probability space to model the
randomness of shapes and make the SECT a random variable (in
the measurable sense) taking values in C(SY~!; H). More impor-
tantly, this probability space helps justify the KL expansion of
the SECT, which lays the foundations for our hypothesis testing
method in Section 5.

Probability Space. Suppose S R4 is equipped with a o -algebra
Z. A distribution of shapes K across SM Rd 1S represented by a
probability measure P = P(dK) on .#. Then, (SM R F,P)isa
probability space. For each fixed (v, t), the integer-valued map
x¢ + K — x/(K) is defined on SM Hereafter, we assume the
following:

Assumption 2. For each fixed (v,t) € S-1 x [0, T], the map
xX¢ (Sljyd, F) — (R, Z(R)) is a measurable function and,
hence, a real-valued random variable.

A o-algebra F satisfying Assumption 2 exists. Here, we
construct a metric p on S rq and show that the Borel algebra
A (p) induced by p satisfies Assumptlon 2. We define

. T 3 1/2
| {(/0 ]x,”(Kn—x:(Kz)jdr) }
vesi-1

d
p(K1, K2) = sup
for all K1, K, € Syl. (4.1)

Theorem 4.1. The map p is a metric on Sﬁ’l 4+ Assumption 2 is
satisfied if % = AB(p).

Under Assumption 2, the ECC {x/}scjo,17, for each v €
S9-1, is a stochastic process defined on the probability space

(8£4 7, P). Since each sample path {x,"(K)}te[o,r] has finitely

many discontinuities (Lemma 3.1), fot X+ (K)dr for each t €
[0, T] is a Riemann integral, which is equal to the limit of Rie-

mann sum fot xY(K)dt = limy— oo {% Y x}’,(K)}. Given

that each x}; is arandom variable under Assumption 2, the limit
of the Riemann sum for each ¢t € [0, T] is a random variable
as well. Therefore, for each v € S, {fot Xe dT }eo, 1) With

Jo x¥dt : K+ [y x(K)dr isastochastic process. Then, under
Assumption 2, (3.3) defines the following stochastic process on

(Sﬁ/ld, Z,P) for each v € S%!

t t
SECT(v) & {/ xVdt — —f x2dr ¥ SECT(v, t)} .
0 T Jo £€[0,T]
(4.2)

Precisely, for each fixed v, we have the stochastic process
SECT(V) : K — SECT(K)(v) = {SECT(K)(v, t)}tef0,17 defined

on (SM R > F,P); and, for each fixed (v, t), we have the real-valued
random variable SECT(v,t) : K +— SECT(K) (v, t) defined on
(S4, 7,P).

Since ‘H is an RKHS (Appendix A.1), Lemma 3.2 and The-
orem 3.2, together with Theorem 7.1.2 of Hsing and Eubank
(2015), imply the following. Its proof is omitted.
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Theorem 4.2. (i) For each v € S%!, SECT(v) is a real-
valued stochastic process with sample paths in H. Equivalently,
SECT(v) is a random variable taking values in (H, Z(H)). (ii)
The map SECT defined in (3.6) is a random variable taking
values in C(S91; H).

Using Theorem 4.2 in conjunction with Theorem 3.3, we can
represent random shapes (which model the surfaces of the
mandibular molars in Figure 1) as C(S%1, H)-valued random
variables. This representation through the SECT has no loss of
information.

In Appendix D.2, we provide proof-of-concept examples
to illustrate random shapes and their SECT representations
visually. These examples relate the SECT to Fréchet regression
(Petersen and Miiller 2019), Wasserstein regression (Chen et al.
2023), and manifold learning (Dunson and Wu 2021; Meng and
Eloyan 2021; Li, Mukhopadhyay, and Dunson 2022).

Mean and Covariance of the SECT. For deriving the KL expan-
sion in Section 5, we define the mean and covariance of the
SECT. To do so, we need the following lemma.

Lemma 4.1. For any probability measure P defined
on the measurable space (ngd, F), we have

E {supvegd_l || SECT(v) ”%—L} =
| SECT(K)(v) |13, } P(dK) < oc.

./1811{";1 {SupveSd_l

Lemma 4.1, together with (2.1), implies that E| SECT (v, t)|? <
C% - E| SECT(W)||2, < oo forall (v,£) € S~ x [0, T]. Then,
we define the mean and covariance functions as follows

my(t) = E{SECT(v, 1)} = / _ SECT(K)(v, 1) P(dK),

Rd

=, (5,) = cov ( SECT(v, s), SECT(v, t)), fors,t € [0, T]

and v € S,
(4.3)

Lemma C.4 provides several properties of the mean m, and
covariance E, that validate our KL expansion of SECT(v) in

Section 5. Additionally, Lemma C.4 demonstrates that the mean

m def {my},cgi—1 of SECT belongs to C(S%1;H). A tentative

discussion on the “pseudo-inverse” SECT ! (m) is provided after
Lemma C.4 in Appendix C.

In most shape analysis studies, data are preprocessed by
alignment. In Appendix E, we introduce the “ECT alignment” as
a preprocessing step before any statistical inference. Throughout
the article, we assume that the data have been aligned using this
method. The ECT alignment exploits rigid motions, does not
rely on landmarks, and is equivalent to the alignment approach
outlined in Wang et al. (2021) (Supplementary Section 4). The
primary objective of the ECT alignment is to minimize the
differences between two shapes that arise from rigid motions.
For instance, the molars in Figure 1 were aligned using the ECT
alignment. Furthermore, the ECT alignment is compatible with
our SECT framework. Appendix E demonstrates that the ECT
alignment does not alter the qualitative properties of SECT (e.g.,
the measurability, Sobolev-regularity, and %—Hélder continuity).

In applications, it is infeasible to sample infinitely many direc-
tions v € S¥"! andlevels ¢ € [0, T]. For given shapes K, we com-
pute SECT(K) (v, t) for finitely many directions {vi,...,vr} C
S91 and levels {t1,...,ta} < [0, T]. To retain information
about shapes K, one needs to properly set the numbers of
directions and levels (i.e., I' and A). From a theoretical view-
point, Curry, Mukherjee, and Turner (2022) comprehensively
discussed the number I" of directions needed to recover shapes
K from ECT(K) when K are “piecewise linearly embedded
shapes with plausible geometric bounds” From the numerical
perspective, we note the following: (i) Wang et al. (2021) pro-
vided detailed simulation studies on the choices of I" and A in
sub-image analysis, and a general guideline for setting I' and
A in practice was presented in Supplementary Table 1 therein;
and (ii) in our Appendix K, we provide detailed numerical
experiments on the tradeofts between the choices of I and A,
the statistical power of our proposed algorithms (Algorithms 1
and 2), and computational cost.

5. Testing Hypotheses on Shapes

In this section, we apply the probabilistic formulation from
Section 4 and Lemma C.4 to test hypotheses on shapes. Suppose
PM and P® are two distributions on the measurable space
(Sﬁj[d, F). Let PV ® P@ be the product probability measure
defined on the product o-algebra .# ® 7, satisfying PV ®
P@ (A x B) = PD(A) - PO(B) for all A,B € .Z. To address
the motivating question from Section 1.1, we test the following
hypotheses

Hy: PO =P, ys Hf: PO 2P, (51)
for example, suppose P! and P® model the distributions of
molars from two genera of primates (Figure 1). Rejecting the H
in (5.1) helps distinguish the two genera of primates.

Define m¥ (f) = S SECT(K)(v, 1) PO (dK) for j € {1,2)

as the mean functions corresponding to P and P, To reject
the null Hy in (5.1) (equivalently, distinguish two collections
of shapes), it suffices to reject the null hypothesis Hy in the
following

1 2
Hy : m‘(} )(t) = m‘() )(t) forall (v,f), versus

5.2
Hi : m‘()l)(t) -+~ ml()z)(t) for some (v, t). 5-2)

Analysis of Variance for Functional Data (fdANOVA). Con-
sidering the hypotheses in (5.2) for all directions v € §é-1
results in simultaneous multiple-comparisons and inflation of
the Type I error. To address this issue, we focus on a specific
direction, motivated by the observation that the null hypothesis
Hp in (5.2) is equivalent to supvesdfl{llm,(,l) — mf,z)HB} = 0.
Hence, the direction of interest is defined as

px def arg max {||mf}l) — m]()z) ||B} . (5.3)
1

veSi—
Lemma C.4 and (2.2) imply {m](j)}jz=1 C B for all v. Lemma
C.4, together with (2.1), confirms the existence of a maximizer

in (5.3). The maximizer in (5.3) may not be unique. If there are
multiple maximizers, we arbitrarily choose one, as this choice



does not influence our framework. The null hypothesis Hyp in
(5.2) is then equivalent to IIm‘()I*) - m‘(jz*) Iz = 0, where the v*
defined in (5.3) is called a distinguishing direction. Hereafter, we
investigate the distribution of SECT(v™*).

Based on the discussion above, testing the hypotheses in (5.2)

is equivalent to testing mf,?(t) = m‘(ﬁ)(t) for t € [0, T] using
SECT(v*), which is a f{dANOVA problem that has been well-
studied in the literature (e.g., Zhang 2013, sec. 5.2). However,
many state-of-the-art fdANOVA approaches are incompatible
with SECT(v*). For example, the Gaussianity of SECT(v*) is
not guaranteed (Remark C.1), and the “two-sample problem
assumptions” in Section 5.2 of Zhang (2013) may not be satisfied.
Besides, the L?>-norm-based test (Zhang and Chen 2007) and
F-type test (Shen and Faraway 2004) are not preferred when
the functional data are not Gaussian (Zhang 2013, chap. 5).
Additionally, many fdANOVA methods are time-consuming.
For example, tests based on random projections (TRP, Cuesta-
Albertos and Febrero-Bande 2010) require the computation of
(at least 30) L?-projections for each observed function, followed
by the application of appropriate ANOVA tests to these projec-
tions. To address the Gaussianity issue and achieve computa-
tional efficiency, we propose a method for fdANOVA using the
KL expansion. Our test has a foundation that aligns with the
probabilistic framework of SECT (v*) in Section 4; it is compa-
rable with the existing methods in terms of size and power (see
Appendix J); and it is also computationally efficient, allowing for
the permutation test used with our method.
Karhunen-Loéve Expansion. Let EE’,Z (s, t) be the covariance
function of the stochastic process SECT(v*) corresponding to
PO, forj € {1,2} (see (4.3)). Hereafter, we assume the following,
which is true under the null hypothesis Hj; : PO = P@ jn (5.1).
Assumption 3 (Homoscedasticity). E,» def E](}*) = E‘(ﬁ), where
v* is defined in (5.3).

This is a standard assumption in the {dANOVA literature (e.g.,
Zhang 2013, sec. 5.2) and can be tested using the methods
proposed by Jia Guo and Zhang (2019).

We define an integral operator on L*([0, T]?) as f > fOT f(s)-
E,#(s,-) ds. This operator is compact and self-adjoint (Hsing
and Eubank 2015, Theorems 4.6.2 and Example 3.3.4). More-
over, the Hilbert-Schmidt theorem (Reed and Simon 1972, The-
orem VI.16) suggests that there is a complete orthonormal basis
{#1};2, for L*([0, T]) so that (i) each ¢y is an eigenfunction with
eigenvalue Aj, (i) A1 > A > --+ > 0, and (iii) limj, o A; = 0.
Lemma C.4 and Theorem 7.3.5 of Hsing and Eubank (2015)
imply the following KL expansion:

Theorem 5.1 (Karhunen-Loéve expansion). (i) For each fixedj €
{1, 2}, we have

L 2
lim sup EO |:SECT(V*, n—mlt) = Vi z) ¢l(t)} =0,
=1

L—00 tef0,1]
(5.4)

where Z (k) & ﬁfoT{SECT(K)(u*, B — m (0} - i(o) dt

for = 1,2,...,and EY is the expectation associated with P0).
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Foreachj € {1, 2}, the random variables {Zl(’ ) }i2, are defined on
the probability space (Sg’[ i ZF,P0)Y, are mutually uncorrelated,
and have mean 0 and variance 1. (ii) There exists N € .Z¥ ® &%
so that PV @ P@ (N) = 0 and

5 (Ka)) K(Z))

T
def \/%/ {SECT(K(I))(V*, f) — SECT(K®)(v*, t)} (b dt
1J0

(D) (1) () (1(2) (5.5)
Z; (KW — 2,7 (K'¥)
ol ( ] z ) ,

V2
def 1 T ) %))
where 6 % —— {m ) —m? (t)} - it) dt,
0

for any (K, K@) ¢ A and each fixed | = 1,2,.... The null
set \V is allowed to be empty.

Using the KL expansion in (5.4), the random sampling of shapes
may be considered, which is discussed in Appendix M.1 and left
for future research.

Our Approach. Consider two independent collections of
‘ id '
random shapes {Ki(’) 1 =~ PO, for i € {1,2} (e,
i
{(Ki(l),Ki(z))}?:1 ~ P g P@). The pairing in (Ki(l),Ki(z))
is arbitrary for the following reasons: (i) pairs (Ki(l),Ki(z)) and
(Ki(l),Kl.(,z)) with i # i have the same distribution PV @ P,
and (ii) numerical experiments in Sections 6 and 7 demonstrate
that the performance of our proposed algorithms is numeri-
cally invariant to shuffling the index i within each collection
{Ki(])}?:l' Without loss of generality, we assume that all the
shapes have been aligned using the “ECT alignment” (Appendix
E). Here, we present the theoretical foundation for employing
{(Kl.(l), Ki(z))}?:1 to test the hypotheses in (5.2). This foundation
helps address the motivating question from Section 1.1.
Without loss of generality, we assume (K 1.(1), Kl.(z)) ¢ N, forall
i=1,2,...,n, where N is the null set in Theorem 5.1 satisfying
P @ P@(N) = 0. Then, we have

@ g™ @) (@
def &) - 2P &)
Ei = 8 (I<,4(1),I<1.(2)):914r RS T KT

V2

(5.6)

where §; and 6 are defined in (5.5). Theorem 5.1 implies that,
for each fixed [, the random variables {&;;}7 ; are iid across
i = 1,...,n with mean 0; and variance 1; for each fixed i,
the random variables {&;}7°, are mutually uncorrelated across
I = 1,2,3,.... The following lemma represents the null Hy in
(5.2) using the means {6/}, .

Lemma 5.1. The null Hy in (5.2) is equivalent to 6; = 0 for all
positive integers I.

Recall that limj .o A7 = 0. When eigenvalues A; in the
denominator of (5.5) are close to zero for large , the estimated
) becomes unstable. Specifically, even if mfjl*)(t) A m‘(ﬁ)(t), an
extremely small A; can move the corresponding estimated 6
far away from zero. Using the standard approach in principal
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Table 1. Rejection rates (from 1000 experiments) for different indices ¢ (significance « = 0.05).

Indices & 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10
Algorithm 1 0.118 0.161 0.315 0.519 0.785 0.910 0.975 0.990 1.000
Algorithm 2 0.046 0.054 0.162 0.343 0.612 0.789 0.931 0.994 1.000
Algorithm 3 0.050 0.050 0.111 0.185 0.335 0.535 0.739 0.983 0.999
FP 0.136 0.153 0.308 0.539 0.810 0.924 0.986 0.997 1.000
TRP-WTPS 0.075 0.091 0.261 0.515 0.790 0.929 0.980 0.997 1.000

NOTE: Appendix J provides a comparison of Algorithms 1, 2, and 3 to other existing fdANOVA methods.

component analysis, we focus on {GZ}IL:1 with

L def max{1, L},

~ def . [_1
where L = min leN‘ > 0.95
{ X }
(5.7)

Hence, to test the hypotheses in (5.2) via Lemma 5.1, we test the
following

ﬁo 10 = =0, =0, versus H1 there exists (5.8)
I' e {1,...,L} such that 6y # 0. ’
Under the null ﬁo in (5.8), for each I € {1,...,L}, the cen-

tral limit theorem indicates that \/Lﬁ Yo, & is asymptotically

N(0,1) when # is large. The mutual uncorrelation in Theo-
rem 5.1 and the asymptotic normahty of —= ZZ 1 &1i provide

the asymptotic independence of { Tﬁ Zi:l 51,1}1:1 across | =

., L. Then, Zlel (ﬁ Y-, &) is asymptotically x7 under
the Hy in 15.8). At the asymptotic significance ¢ € (0, 1), we
reject the Hy if

L

2
1 n
Z <ﬁ Zél,z) > X]il_a = the 1 — « lower quantile
I=1 i=1

of the Xf distribution. (5.9)

In applications, neither the mean m (t) nor the covariance
E, (s, t) is known. Hence, the KL expansions in (5.5) cannot be
directly used and must be estimated. In Appendix F, we propose
a numerical foundation for conducting the asymptotic y2-test
in (5.9) and encapsulate the numerical procedures for the test
in Algorithm 1. In all our analyses in Sections 6 and 7, the
numerical estimates T (see (F4) i in Appendix F) of the L in (5.7)
are smaller than 10. When the L values are large (e.g., several
hundred), one may also consider applying the adaptive Neyman
test proposed by Fan (1996).

In the simulation studies presented in Tables 1 and J.1,
our Algorithm 1 has comparable performance with more than
ten existing state-of-the-art f{dANOVA methods. Nonetheless,
both Algorithm 1 and the existing methods exhibit Type I
error inflation (e.g., the rejection rate of Algorithm 1 is 0.118,
whereas the significance is 0.05). To mitigate this inflation, we
may consider applying the permutation test using one of these
methods that is computationally efficient. For example, Gérecki
and Smaga (2015) proposed a permutation test based on an
F-type statistic (FP). Specifically, Gérecki and Smaga (2015)
approximated each observed function by basis functions via
information criteria, and the F-type statistic was approximated
by a form conducive to efficiently computing permutation-based

Table 2. P-values of Algorithms 1, 2, and 4 for the dataset of mandibular molars.

Algorithm 1 Algorithm 2 Algorithm 4
Tarsius vs. Microcebus <103 <1073 <103
Tarsius vs. Mirza <1073 <1073 0.001
Tarsius vs. Saimiri <1073 <1073 <1073
Microcebus vs. Mirza <1073 0.009 0.004
Microcebus vs. Saimiri <1073 <1073 <1073
Mirza vs. Saimiri <1073 <1073 <1073
Tarsius vs. Tarsius 0.196 (0.220) 0.496 (0.294) 0.527 (0.273)
Overall runtimes (in hours) ~3 ~3 ~ 20

NOTE: In the last row, we present the overall runtime for conducting all hypothesis
testing tasks using each algorithm.

p-values. However, the FP also exhibits Type I error inflation
(see Tables 1 and J.1). Motivated by the FP, we apply the per-
mutation test to the y2-statistic defined in (5.9) in the following

way: we first apply Algorithm 1 to our original shapes Ki(])
and then repeatedly reapply Algorithm 1 to the shapes with
shuffled group labels j. The y>-test statistic derived from the
original data is then compared to that from the shuffled data.
A detailed description of our permutation-based approach is
presented in Algorithm 2 in Appendix F. Simulations in Sec-
tion 6 demonstrate that our permutation-based approach elim-
inates the Type I error inflation encountered by Algorithm 1.
The permutation nature of Algorithm 2 is also advantageous
for small sample sizes. Note, however, that the power of Algo-
rithm 2 under the alternative is moderately weaker than that
of Algorithm 1. Lastly, the runtimes of Algorithms 1 and 2,
when applied to simulations, are studied in Appendix K. We
present the runtimes when applying the algorithms to real data
in Table 2.

6. Experiments Using Simulations

We present simulations showing the performance of our Algo-
rithms 1 and 2. In addition, we compare our algorithms with the
“randomization-style null hypothesis significance test (NHST)”
(Robinson and Turner 2017), the TRP using Wald-type per-
mutation statistic (TRP-WTPS, Cuesta-Albertos and Febrero-
Bande 2010; Pauly, Brunner, and Konietschke 2014), and the FP.
Details of the randomization-style NHST are given in Appendix
G and referred to as Algorithm 3. The application of the FP
and TRP to the SECT is described in Section 5. We implement
the FP and TRP-WTPS using the R package £dANOVA with
its default parameters as recommended by Goérecki and Smaga
(2019). Additional simulations comparing our proposed algo-
rithms and other existing f{dANOVA methods are presented in
Appendix J.
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Figure 3. (Left panel) The relationship between ¢ and the rejection rates computed via Algorithms 1, 2, 3 (see Table 1), and 12 existing fdANOVA methods (see Table J.1 in
Appendix J for details on the existing fdANOVA methods). The (red) dashed line presents the significance level « = 0.05. (Right panel) The shapes in the first row are from

P(©, and the shapes in the second row are from P(0-98)

We focus on a family of distributions {P(S)}ofgfo,l with

1
shapes {K,-(E)}?=1 ~ PE via

Ki(g) def {x e R?

inf |[x—y| <02%, where (6.1)
yest®

i

def . _
Sga) = {(% + ay,i - cost, by;-sint) )ITSJT <t< 9%ﬁ} U

6m 147

—StST} and

{(—% + ay; - cost, by - sin t) =

(a1 a2, bris bai} i N(1,0.05%). The & denotes the
dissimilarity between P® and P©. For each ¢ € [0, 0.1],
through the discussion in Section 5, we test the following
hypotheses via fdANOVA methods (i.e., FP, TRP-WTPS,
Algorithms 1, and 2)

Hy : mfjo)(t) = ml(f)(t) forall (v,£) € S*! x [0, T] versus
Hi : mf,o)(t) # m,(f)(t) for some (v, t),

where the mean m{ (£) def fsﬁdd SECT(K)(v, ) P (dK), and

the null hypothesis Hy is true when ¢ = 0. We also test Hj :
PO = P© ys, PO £ P© ysing Algorithm 3.

We set T = 3, directions v, = (cos p%ln, sin p%ln)T for
p € {1,2,3,4}, levels t; = S—Toq forq € {1,...,50} (i.e., I" = 4
and A = 50 in Algorithms 1, 2, and 3), the confidence level
95% (i.e., « = 0.05), and the number of permutations IT =
1000. For each ¢ € {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08,
iid

~

0.1}, we independently generate two collections {K (0)};1:1

1
P© and {Ki(‘s)};?:1 Y pe through (6.1) with the number of
shape pairs set to n = 100, and we compute the SECT of
each generated shape in directions {v, }4:1 and at levels { tq}50:1.
We then implement the f{dANOVA methods and Algorithm
3 to these computed SECT statistics and get the correspond-
ing Accept/Reject outputs. We repeat this procedure 1000
times and report the rejection rates across all 1000 replicates for
each ¢ in Table 1. The rejection rates are also visually presented

in Figure 3. We choose I' = 4 as the number of directions in our

simulations based on the following observation: in Appendix
K, we experiment with all combinations of I' € {2,4,8}, A €
{25,50,100}, and n € {25,50,100}. When A = 50 and n = 100,
the number I' = 4 is sufficiently large for our Algorithms 1 and
2 to distinguish P() from P®) with & > 0 using the significance
level @« = 0.05. Moreover, this choice allows us to demonstrate
that even a relatively small number of directions (e.g., I' = 4) is
sufficient for implementing our Algorithms 1 and 2.

The results in Table 1 and Figure 3 demonstrate that our
proposed algorithms are effective at detecting the difference
between P and P© in terms of distinguishing their mean
functions. Notably, our algorithms (especially Algorithm 2) tend
to avoid falsely detecting differences between shape-generating
distributions under the null hypothesis (ie, ¢ = 0). As ¢
increases, P) deviates from P(©), and the power of our algo-
rithms in detecting the deviation increases. When ¢ > 0.08,
the power of Algorithms 1 and 2 exceeds 0.99. For all the ¢,
it is difficult to see the deviation of P from P© visually.
For instance, by merely observing the shapes in Figure 3, one
might find it hard to differentiate between the shape collections
generated by P (blue) and P(*%® (pink). However, in more
than 99% of the simulations, our algorithms detect the difference

between the two distributions. We also randomly shufle the
n

index i within each collection {Ki(g)}i=1 and apply Algorithms
1 and 2 to the shuffled collections. The results obtained from
the unshuffled and shuffled shape collections, respectively, are
nearly identical. Algorithm 3 performs well in detecting the
discrepancy between P() and P®), However, its power under
the alternative hypotheses (i.e., ¢ > 0) is weaker than that
of our Algorithms 1 and 2. Moreover, Algorithms 1 and 2
exhibit performance comparable to twelve existing state-of-the-
art fdANOVA methods (see Table 1, Figure 3, and Table J.1 in
Appendix J).

7. Applications

We first apply our proposed Algorithms 1 and 2 to the MPEG-7
shape silhouette database (Sikora 2001) as a toy example. Details
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of this are provided in Appendix I. This analysis shows that our
proposed algorithms can distinguish between shape classes in
the silhouette database and do not falsely identify signals when
there are no differences between groups.

In this section, we apply our algorithms to address the moti-
vating question in Section 1.1. Specifically, we use Algorithms 1
and 2 to distinguish between the four categories of mandibu-
lar molars in Figure 1 that are from four genera of primates.
The shapes in Figure 1 come from two suborders of primates:
Haplorhini and Strepsirrhini (see Figure 1). In the haplorhine
suborder collection, 29 molars came from the genus Tarsius
(yellow panels in Figure 1), and 9 molars came from the genus
Saimiri (grey panels in Figure 1). In the strepsirrhine collection,
11 molars came from the genus Microcebus (blue panels in
Figure 1), and 6 molars came from the genus Mirza (green panels
in Figure 1).

Before applying Algorithms 1 and 2, we preprocess the raw
triangle mesh data of the surfaces of the molars by aligning them
through the ECT alignment approach detailed in Appendix E.
The aligned molars are presented in Figure 1. We apply our
Algorithms 1 and 2 to the preprocessed molars. For each aligned
molar, we compute its SECT for 2918 directions; in each direc-
tion, we use 200 sublevel sets. To compare any pair of molar
groups, as a proof of concept, we select the smaller size of the two
groups as the sample size input 7 in our algorithms. For example,
when comparing the Tarsius and Microcebus groups, we choose
n = 11; that is, we compare the first 11 molars of the Tarsius
group to all the molars in the Microcebus group. We apply our
algorithms to the four groups of molars and present the results
in Table 2. The p-values in Table 2 are either x2-test p-values
(Algorithm 1) or permutation-test p-values (Algorithm 2 with
1000 permutations). The small p-values (P < 0.05) in Table 2
show that our proposed algorithms can distinguish the four
different genera of primates. Since the genera Microcebus and
Mirza belong to the same suborder Strepsirrhini (see Figure 1),
the p-value from Algorithm 2 is comparatively large when com-
paring molars from these two groups. In comparison, although
the Tarsius and Saimiri both belong to the suborder Haplorhini,
the molars of the two genera look different. Specifically, the
paraconids (i.e., the cusp highlighted in red in Figure 1) are only
retained by the genus Tarsius and, thus, are a key reason for the
small p-values (P < 1073) when comparing with molars from
the Saimiri. Other small p-values (P < 1073) in our analyses
are a result of the corresponding genera belonging to different
suborders.

In addition to testing the difference between genera, we apply
our algorithms within the genus Tarsius. Specifically, we focus on
the first 28 molars in the Tarsius group. We randomly split the
28 molars into two halves and apply Algorithms 1 and 2 to test
the difference between the two halves. We repeat the random
splitting procedure 100 times and present the corresponding p-
values in Table 2. The results are summarized by their mean and
standard deviation (in parentheses). These p-values show that
our proposed Algorithm 2 tends to avoid the Type I error for
the molars from the genus Tarsius.

Landmark methods are widely used in geometric morpho-
metrics. One state-of-the-art approach is the “Gaussian process
landmarking (GPL)” algorithm (Gao et al. 2019; Gao, Koval-
sky, and Daubechies 2019) which can automatically sample

landmarks on the surfaces of the molars in Figure 1. Gao et al.
(2019) showed that these sampled landmarks could induce a
continuous Procrustes distance to measure the dissimilarity
between molars. A permutation test can be derived using the
Procrustes distance induced by the GPL algorithm. This test
is detailed in Appendix H and is encapsulated by Algorithm
4. We use the GPL-based Algorithm 4 to differentiate the four
collections of molars. For this, we use the MATLAB code from the
GitHub repository provided by Gao etal. (2019) to compute the
Procrustes distance. Performance of Algorithm 4 is in Table 2,
which shows that the GPL-based method and our Algorithm 2
have comparable performance. However, repeatedly computing
the Procrustes distance is time-consuming. Hence, Algorithm
2 is more computationally efficient than Algorithm 4 while
achieving similar performance (see the last row of Table 2).

We want to note that, in addition to the GPL algorithm,
many other existing methods can be applied to measure
dissimilarity between molars, including parameterized sur-
faces (Kurtek et al. 2010, 2011) and the approaches from
computational anatomy (Grenander and Miller 1998). Simi-
larly, the parameterized curves (Kurtek et al. 2012) can also
be used to analyze the silhouette database in Appendix I.
An even more comprehensive comparison of our algorithms
with the entire edifice of existing methods is left for future
research.

8. Conclusions and Discussions

In this article, we established the mathematical foundations
for the randomness of shapes via the SECT. Specifically, (i)
(Sﬁj[d,%(p),l[”) was constructed as the underlying probabil-

ity space; (ii) the SECT was modeled as a C(S*1;H)-valued
random variable. We further demonstrated several properties
of the SECT ensuring its KL expansion, which led to a x2-
statistic for testing hypotheses on random shapes. We bridged
the f{dANOVA and TDA. Simulation studies corroborated our
mathematical derivations and showed the performance of our
hypothesis testing algorithms. Our approach was shown to
be powerful in detecting the difference between two shape-
generating distributions. We applied our proposed algorithms to
silhouette and primate molar datasets. Importantly, our simula-
tions when & = 0, together with the applications to the molars
and the silhouette database, indicate that our algorithms tend
to avoid falsely detecting differences between shape-generating
distributions when there are none. Using the molars in Fig-
ure 1, we compared the performance of our algorithms to a
permutation test based on a state-of-the-art landmarking algo-
rithm (Gao et al. 2019; Gao, Kovalsky, and Daubechies 2019),
underscoring the efficiency of our algorithms. We enumerate
potential future research areas in Appendix M, for example,
the {fdANOVA methods can be used for brain connectivity
(Chen et al. 2024; Meng and Eloyan 2024) via topological
summaries.

Supplementary Materials

The supplementary materials provide the proofs of theorems, further data
analysis, and future research topics.
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