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1 | INTRODUCTION

Burkitt lymphoma (BL) comprises 30%-50% of all pediatric can-

cers in equatorial Africa.! Molecularly characterized by a
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Abstract

Although Epstein-Barr virus (EBV) plays a role in Burkitt lymphoma
(BL) tumorigenesis, it is unclear if EBV genetic variation impacts clinical outcomes.
From 130 publicly available whole-genome tumor sequences of EBV-positive BL
patients, we used least absolute shrinkage and selection operator (LASSO) regression
and Bayesian variable selection models within a Cox proportional hazards framework
to select the top EBV variants, putative driver genes, and clinical features associated
with patient survival time. These features were incorporated into survival prediction
and prognostic subgrouping models. Our model yielded 22 EBV variants, including
seven in latent membrane protein 1 (LMP1), as most associated with patient survival
time. Using the top EBV variants, driver genes, and clinical features, we defined three
prognostic subgroups that demonstrated differential survival rates, laying the founda-
tion for incorporating EBV variants such as those in LMP1 as predictive biomarker

candidates in future studies.
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What's New?

Although Epstein-Barr virus (EBV) plays a role in Burkitt lymphoma tumorigenesis, it is unclear
if EBV genetic variation impacts its clinical outcomes. Here, the authors incorporated EBV varia-
tion along with clinical features and driver gene mutations into survival models for Burkitt lym-
phoma patients with EBV-positive tumors. The findings offer key insights into the role of
specific EBV variants in patient survival time and their interactions with driver genes and clinical
features in Burkitt lymphoma. The study also highlights the potential use of EBV variants, espe-
cially those in latent membrane protein 1, as predictive biomarker candidates.

translocation of the immunoglobulin enhancer upstream of the
MYC gene, BL has traditionally been categorized into three epi-
demiologic subtypes (endemic BL, sporadic BL, and HIV-BL).2
Sporadic BL is most often diagnosed in adolescents, adults, and
elderly patients residing in non-tropical countries and has a sur-

vival rate greater than 90%, unlike endemic Burkitt lymphoma
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(eBL), which is primarily diagnosed in children younger than
9 years of age living in equatorial Africa and has a lower survival
rate of 50%, likely largely due to access to care.® It has been
hypothesized that repeated infections with the malarial parasite,
Plasmodium falciparum, combined with early-age infection with
Epstein-Barr virus (EBV), induces polyclonal B-cell expansion and
activation-induced cytidine deaminase-dependent DNA damage,
increasing the probability of the MYC translocation.*> More
importantly, the studies have increasingly supported the idea
that the presence or absence of EBV may represent a more clini-
cally/molecularly relevant means of subtyping as opposed to tra-
ditional epidemiologic divisions.®™®

Known systematically as human herpesvirus 4, EBV has a double-
stranded DNA genome measuring 172 kb.? During initial infection of
the epithelial cells, which primarily occurs via saliva,’° EBV has two
primary stages: lytic and latent. Of these, the latent stage is most criti-
cal for cell immortalization and tumorigenesis and has limited states of
protein expression involving the latent membrane proteins (LMP1,
LMP2A, LMP2B) and the EBV nuclear proteins (EBNA1, EBNA2,
EBNA-3A, EBNA-3B, EBNA-3C, EBNA-LP), of which EBNA2 and
EBNA3 show deep divergence, classifying the virus into type 1 and
type 2.1

Historically, studies have conformed to the dogma that EBV in
BL is confined to the latency | state in which only the EBNA1 gene
as well as BART and EBER miRNAs are expressed.'? Recent studies
are finding, however, that heterogeneity across and within BL
tumors may enable alternative latency states such as latency Il
where other genes including LMP1 are expressed.*®>* Willard and
colleagues even reported spontaneous lytic BL cell lines that
expressed LMP1.13

EBV type and variation are extensive and known to affect tumori-
genesis.15 For example, whole-genome sequencing (WGS) revealed
from 101 BL tumors that viral presence drove mutations through the
activation-induced cytidine deaminase mechanisms and defined a set
of 72 driver genes, which were differentially expressed among the
three epidemiologic subtypes of BL.® Kaymaz et al.” demonstrated
that about a third of eBL tumors contain EBV type 2, whereas
two-thirds are infected with EBV type 1 along with intertypic recom-
binants containing type 1 and type 2 regions. Recent work has exam-
ined EBV in tumorigenesis and patient survival time, but so far it has
focused on the major division of types 1 and 2. Thus, there is signifi-
cant variation beyond type-specific variation that is currently unex-
plored. For example, Thomas et al.!® established genetic subtypes
within BL based on the driver genes and compared EBV status and
survival among their genetic subtypes but did not examine the rela-
tionship between driver genes and specific EBV variants. A recent
study also found that some EBV-positive Sporadic BLs may be molec-
ularly similar to EBV-positive eBLs.!” Thus, within EBV-positive BL,
we sought to elucidate the role of specific EBV variants in affecting
patient survival time, determine the association between specific EBV
variants and driver genes in regard to patient survival time, and define
new prognostic subtypes incorporating both EBV variants and driver

genes.

2 | MATERIALS AND METHODS

21 | Study population

Based on the known EBV statuses of the publicly available BL tumor

1,51 we downloaded

WGS samples from Thomas et al. and Panea et a
only the EBV-positive samples as processed binary alignment map
files from the BL Genome Sequencing Project (BLGSP)®¢ via the
Genomic Data Commons Data Portal (Project ID: CGCI-BLGSP,
dbGaP Study Accession: phs000235) and our own publicly available
samples from Panea et al.® via the European Genome-Phenome
Archive (Accession Number: EGAD00001005781) on August
31, 2023 (Figure S1). The BLGSP samples were obtained from
patients in Uganda, the United States, France, Canada, and Brazil,
whereas our samples were obtained from patients in Kenya (Table 1).
Due to the growing shift away from traditional epidemiological sub-
types, instead of categorizing patients as endemic or sporadic,
patients were classified based on the country of origin's income classi-
fication in the United Nations' World Economic Situation and Pros-
pects 2024.'8 These categories included high-income countries,
including Canada, France, and the United States, and low-middle-
income countries, including those classified as low-income (Uganda),

lower-middle-income (Kenya), and upper-middle-income (Brazil).*

22 |
calling

Sequencing read preprocessing and variant-

To conduct a uniform process for variant-calling, all reads were pre-
processed with the Genome Analysis Toolkit (GATK) 4.2.2.0 and

TABLE 1 Patient characteristics.
No. patients (%)
Sex
Male 87 (66.92)
Female 43 (33.08)
Median age (range) 8.33(0.94-90)
EBV type
Type 1 103 (79.23)
Type 2 27(20.77)
Country income level
High 27 (20.77)
Low-middle 103 (79.23)
Country
Uganda 70 (53.85)
Kenya 25(19.23)
United States 16 (12.31)
Canada 10 (7.69)
Brazil 8(6.15)
France 1(0.77)

Abbreviation: EBV, Epstein-Barr virus.
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SAMtools 1.16.1 using the human (GRCh38), EBV1 (NC_007605),
and EBV2 (NC_009334) reference genomes per GATK best practices
(details found in Figure $2).2°-22 Since the EBV strains from Thomas
et al's samples were not typed, we uniformly typed all samples,
including those from Panea et al., with BEDtools and SAMtools based
on the number of reads mapping to the EBNA2 and EBNA3 genes of
the reference genomes for each type (Figure §3).2223

To determine the major EBV variants, the uniformly preprocessed
reads across all samples were jointly variant-called using NC_007605
with three rounds of GATK4 HaplotypeCaller per GATK4's best prac-
tices for germline short variant discovery akin to Kaymaz et al., albeit
with haploid settings and revised functions based on the latest GATK
updates (Figure $4).”2* SNPs and indels were also filtered based on
standard metrics (details found in Figure S4). EBV variants were then

f25

annotated with SnpEff<> and filtered with SnpSift to remove synony-

).2¢ Variant sites were further filtered

mous EBV variants (Figure S5
(details found in Figure S5). Missing EBV variants for a given sample
were imputed with the mode of the variant in question across all
samples.

All publicly available samples had human somatic mutation data
for recurrently mutated genes, hereon referred to as driver genes, pre-
viously defined and detected from their respective publications.®*¢
Using this, somatic tumor mutation data in common driver genes for
the 130 WGS samples were extracted and preprocessed with in-
house scripts. Then, for each sample, each driver gene was classified
as mutated (1) if the sample had one or more missense, frameshift,
nonsense, or splice site mutation or unmutated (0) otherwise. Driver
genes were also filtered and imputed with the mode (details found in
Figure S5).

To determine the geographic distribution of the LMP1 amino acid
variants, all publicly available LMP1 protein sequences and complete
EBV genomes were pulled from the National Center for Biotechnol-
ogy Information's Nucleotides database on January 18, 2025.27 The
LMP1 protein sequences were aligned using MAFFT v7.526's multiple
sequence alignment algorithm?® and called for amino acid variants
based on the LMP1 sequence from the EBV1 (NC_007605) reference
genome. Consistent with our previous income classification catego-
ries, geography was split into two groups: Africa/South America
(A/SA) and Europe/North America (E/NA) with sequences from Asia
and Oceania being filtered out. Statistical significance was determined

using Fisher's exact test and the chi-squared test on Stata/SE 18.0.2°

23 |
models

Variable selection and survival prediction

Along with clinical features including patient sex, age, EBV type,
country, and country classification by income (high-income or low-
middle-income), these filtered EBV variants and previously
defined driver genes were then used as features in least absolute
shrinkage and selection operator (LASSO) regularized and Bayesian
variable selection models, both of which were implemented within a

t30

Cox proportional hazards framework with the glmne and

BVSNLP3? packages, respectively, in R®2 (Figure S5). These two vari-
able selection approaches are commonly used to find the most impor-
tant features in high-dimensional data where the number of samples
n is significantly smaller than the number of features p.

Separate variable selection models were implemented for each of
the following categories, hereinafter referred to as feature sets:
(1) clinical features, (2) driver genes, (3) clinical features and driver
genes, (4) EBV variants, (5) EBV variants and driver genes, (6) EBV var-
iants and clinical features (EBV/clinical features model), and (7) EBV
variants, driver genes, and clinical features (complete model). LASSO
Cox and Bayesian Cox then determined which features were associ-
ated with patient survival time. For each feature set, features with
both non-zero coefficients in LASSO Cox and posterior inclusion
probabilities above zero in Bayesian Cox were considered the top fea-
tures used for prediction and prognostic subgrouping. These top
features were then used as the inputs to a Cox proportional hazards
survival prediction model. Using the coxph package®® in R, each fea-
ture set's prediction model was run over 1000 replicates with each
iteration using a random 90-10 training-testing split of all samples.
The variable selection and survival prediction models were implemen-
ted on both the overall cohort including all patients as well as the Afri-
can cohort consisting of patients only from African countries (Kenya
and Uganda). For each feature, the reported hazard ratio was the
median value across all 1000 replicates. Predictive performances were
measured with Harrell's concordance index, where a value of 1 corre-
sponded to perfect prediction of which of any given two patients
would die first across all possible pairs of patients, while a value of 0.5

was an uninformed prediction.®*

24 | Prognostic subgrouping survival model

Using the top features in the complete feature set, the optimal num-
ber of prognostic subgroups was determined with the silhouette
score. The silhouette score measures the mean distance between
points within a subgroup compared to the mean distance
between points across neighboring subgroups. Final prognostic sub-
grouping was conducted with non-negative matrix factorization using
the NMF package in R,®> and Kaplan-Meier curves were performed

to compare each prognostic subgroup's overall survival.

3 | RESULTS

3.1 | Identification of publicly available EBV-
positive BL samples

Of 331 publicly available BL tumor WGS samples from Thomas et al.
(n = 230) and Panea et al. (n = 101),%*® we extracted only 105 and
25 EBV-positive samples, respectively, resulting in a final sample size
of 130 EBV-positive BL samples (Figure S1). Of these 130 EBV-
positive BL patients, 103 (79.2%) were from low-middle-income

countries, whereas 27 (20.8%) were from high-income countries
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(Table 1). Countries of origin included Uganda (n = 70, 53.8%), Kenya
(n = 25, 19.2%), the United States (n = 16, 12.31%), Canada (n = 10,
7.7%), Brazil (n =8, 6.15%), and France (n =1, 0.77%). EBV type
1 was the dominant type, representing 79.2% (n = 103) of all geno-
typed samples, with type 2 being found in 14.8% and 22.3% of
patients in high-income and low-middle-income countries, respec-
tively. The median survival time for patients from low-middle-income
countries was 1.9 years, whereas those from high-income countries
did not have median survival times due to a greater than 50%

survival rate.

3.2 | EBV coverage and variants

Across all 130 samples, the median depth and breadth of read cover-
age of the non-repetitive EBV genome were 797.80% and 99.97%,
respectively. For the repetitive regions, the median depth and breadth
were 633.11% and 99.97%. From an initial 10,347 EBV variants and
16,033 mutated genes, we extracted 724 EBV variants
and 73 potential driver genes for further analysis after filtration
(Section 2).

3.3 | EBV/clinical features model on overall cohort
found a high number of LMP1 variants associated with
patient survival time

Using an initial feature set of EBV variants and clinical features known
as the EBV/clinical features model on the overall cohort, the variable
selection models yielded 22 EBV variants, including seven in LMP1
alone (Met129lle/M129I, His101GIn/H101Q, lle152Leu/1152L, lle63-
Met/163M, Gly212Ala/G212A, Gly212Ser/G212S, and Gly331Glu/
G331Q) as most associated with patient survival time (Table 2). While
only three of the 22 EBV variants, including Thr208Ala/T208A
(BTRF1), Met12Leu/M12L (BDLF3), and Thr710Asn/T710N (BSLF1),
were individually associated with patient survival time in the multivar-
iable Cox proportional hazards analysis (Table 2), all 22 were used in
the survival prediction model. There were no statistically significant
differences in the geographic distribution of the seven LMP1 variants

across our samples in Kenya and Uganda (Table S3).

3.4 | Some key LMP1 variants were differentially
distributed across geographic regions

The 1678 LMP1 sequences were extracted from National Center for
Biotechnology Information's Nucleotides database, of which 278 and
388 were from A/SA and E/NA, respectively, for a total of 666 final
sequences. Of the seven LMP1 variants, three were differentially dis-
tributed across geographic regions. Compared to E/NA, A/SA had a
higher proportion of LMP1 samples with the M129I and 1152L LMP1
variants and a lower proportion of the G331Q variant (M1291: E/NA
73.17% vs. A/SA 90.16; 1152L: E/NA 13.41% vs. A/SA 40.44%;

G331Q: E/NA 12.76% vs. A/SA 0.72%; Table S4). The remaining four
LMP1 variants (H101Q, 163M, G212A, and G212S) were not differen-

tially distributed across the geographic regions.

3.5 | EBV/clinical features model on African
cohort still indicated a high number of significant
variants in LMP1 but not EBV type

When limited to patients in Africa (n = 95) for the African cohort, six
of the 22 EBV variants from the overall cohort remained significantly
associated with patient survival time (P308Q, 163M, H101Q, A339T,
1152L, and G212A) with four of those coming from LMP1 alone
(163M, H101Q, 1152L, and G212A) (Table S1). In this variable selection
model, six of the 19 variants significantly associated with patient sur-
vival time were located in LMP1 (Leu25lle/L25l, 163M, H101Q, 1152L,
G212A, GIn322His/Q322H). EBV type was still not significantly
associated with patient survival time, and while there were three sig-
nificant variants in EBNA2 in the initial analysis, removing all type-
specific variants did not alter the lack of association between EBV

type and patient survival time.

3.6 | Country income level was the strongest
individual feature among all features associated with
patient survival time but EBV type was not associated

In the EBV/clinical features model on the overall cohort, country
income level was the single most significant feature of all features
associated with patient survival time, with a hazard ratio of 12.10
(Table 2). Country-level income was also the only clinical feature asso-
ciated with patient survival time, as EBV type, patient sex, age, and
country were not significantly associated. When limited to African
patients only, there was no statistically significant survival difference
between patients in Kenya (n = 25) and patients in Uganda (n = 70,
p = .44). Removing type-specific variants such as those within the
EBNA2 and EBNAS genes did not change the lack of association.

3.7 | Complete model on overall cohort found
eight tumor driver genes and nine EBV variants,
including four in LMP1 associated with patient
survival time

In the complete model, which consisted of all clinical features, tumor
driver genes, and EBV variants, the variable selection models identi-
fied eight driver genes, including Contactin-Associated Protein Family
Member 3B (CNTNAP3B), ID3, HIST1H2BK, MAP3K?9, IGK, ETS1,
P2RY8, and TP53, in addition to nine EBV variants with four in LMP1
(H101Q, 1152L, G212A, and G331Q) as most associated with patient
survival time (Table 2), indicating that 13 of the 22 variants from the
EBV variant-only feature set were no longer significant after incorpo-

rating driver genes. A complete feature set analysis on the African
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EBV variant (gene)

EBV feature set
Thr208Ala/T208A (BTRF1)
Met12Leu/M12L (BDLF3)
Thr710Asn/T710N (BSLF1)
Met1291le/M1291 (LMP1)
His101GIn/H101Q (LMP1)
lle152Leu/1152L (LMP1)
lle63Met/163M (LMP1)
Gly212Ala/G212A (LMP1)
Pro308GIn/P308Q (BVRF2)
Gly118Arg/G118R (BLLF1)
Val564_Ala568del/V564_A568del (EBNA-2)
Thr124Pro/T124P (BZLF1)
Pro622Ser/P622S (BBLF4)
Ala339Thr/A339T (BBLF4)
Arg648fs/R648fs (BHLF1)
Glu36GIn/E36Q (BNRF1)
Gly212Ser/G212S (LMP1)
Ala768Val/A768V (BLLF1)
Gly331Glu/G331Q (LMP1)
Val479lle/V479I (BRLF1)
Val611lle/V611I1 (BBLF4)
Pro486Ser/P486S (BRLF1)

Country income level
Low-Middle

Complete feature set
Met12Leu/M12L (BDLF3)
His101GIn/H101Q (LMP1)
Thr208Ala/T208A (BTRF1)
Thr710Asn/T710N (BSLF1)
Pro308GIn/P308Q (BVRF2)
lle152Leu/1152L (LMP1)
Gly212Ala/G212A (LMP1)
Val564_Ala568del/V564_A568del (EBNA-2)
Gly331Glu/G331Q (LMP1)

Driver gene
CNTNAP3B
ID3
HIST1H2BK
MAP3K9
IGK
ETS1
P2RY8
TP53

KIM JR. ET AL.
TABLE 2 Multivariable cox proportional hazards analysis of Epstein-Barr virus (EBV) variants associated with overall survival.
Allele frequency/N (%) aHR (95% Cl) p-Value
123/130 (94.62) 0.004 (0.000-0.061) 8.095*107>
128/129 (99.22) 0.017 (0.001-0.259) .004
16/130 (12.31) 4461 (1.133-17.574) .033
121/130 (93.08) 35.888 (0.953-1318.905) .053
11/130 (8.46%) 4.128 (0.945-17.792) .060
55/129 (42.64) 4.111 (0.738-23.153) .106
54/130 (41.54) 0.143 (0.015-1.463) .104
11/129 (8.53) 0.380 (0.061-2.349) .298
8/129 (6.20) 3.120(0.313-30.738) .335
15/130 (11.54) 1.765 (0.557-5.559) 337
16/127 (12.60) 0.454 (0.088-2.402) .350
39/129 (30.23) 0.621 (0.200-1.925) 407
37/130 (28.46) 1.348 (0.540-3.384) .520
122/129 (94.57) 0.627 (0.086-4.583) .643
19/128 (14.84) 1.236 (0.418-3.635) .689
100/127 (78.74) 0.792 (0.214-2.959) .706
106/128 (82.81) 1.218 (0.268-5.504) .756
11/130 (8.46) 1.130 (0.106-12.977) .874
7/129 (5.43) 2.007*107*° (0.000-N/A) .997
7/130 (5.38) 7.003*108 (0.000-N/A) .998
37/130 (28.46) N/A N/A
7/130 (5.38) N/A N/A
103 (79.23) 12.099 (1.318-104.407) .027
128/129 (99.22) 0.002 (0.000-0.036) 2.625*107°
11/130 (8.46%) 10.942 (3.273-36.860) 9.929*10°°
123/130 (94.62) 0.004 (0.000-0.074) 2.418*10*
16/130 (12.31) 3.887 (1.614-9.395) .002
8/129 (6.20) 4.173 (1.230-13.348) .016
55/129 (42.64) 2.434 (1.181-5.009) .016
11/129 (8.53) 0.260 (0.033-2.182) 222
16/127 (12.60) 0.653 (0.136-3.234) .602
7/129 (5.43) 1.515*1077 (0-N/A) .997
16/130 (12.31) 4,025 (1.172-14.025) .027
55/130 (42.31) 0.424 (0.189-0.946) .036
14/130 (10.77) 2.329 (0.851-6.398) .100
12/130 (9.23) 0.194 (0.017-2.372) 204
33/130 (25.38) 0.559 (0.222-1.405) 217
17/130 (13.08) 1.559 (0.608-4.035) .352
10/130 (7.69) 0.928 (0.097-3.387) .520
25/130 (19.23) 0.926 (0.330-2.610) 797
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TABLE 2 (Continued)

EBV variant (gene)
Country income level

Low-middle

Abbreviation: LMP1, latent membrane protein 1.

cohort shared three of the nine EBV variants (P308Q, H101Q, and
1152L) and three of the eight driver genes (HIST1H2BK, ETS1,
and ID3) in common with the overall cohort (Table S2).

3.8 | Interactions between driver genes, specific
EBYV variants, and country income levels required for
the best survival predictive performance

To better understand variable selection across features, we explored
additional models, examining a total of seven variable selection
models. For each, we incorporated the corresponding features to
predict survival and compared their performance. Each model had
the following number of features: clinical features =1, driver
genes = 33, clinical features/driver genes = 34, EBV variants = 22,
EBV variants/driver genes = 16, EBV variants/clinical features = 23,
and EBV variants/driver genes/clinical features = 18. Since EBV
type, patient sex, age, and country were not associated with survival
from the variable selection models, these clinical features were not
applied in the survival prediction models. The survival model with
the lowest predictive performance used country income level as its
only feature and had a testing concordance index (c-index) of 0.56
(Table 3). The next best performing variable selection and survival
prediction model only used driver genes in its feature set and had a
testing c-index of 0.57 (p = .11 compared to country income level-
only model). When both driver genes and country income level were
used for the feature set, the model had an improved testing c-index
of 0.61 (p < .01 compared to driver gene-only model). Compared to
the model with driver genes and country income level, the model
trained with EBV variants only had an even better testing c-index of
0.72 (p <.01 compared to driver gene + country income level
model). The model using both EBV variants and driver genes
performed similarly with a testing c-index of 0.72 (p =.39). In
comparison, the model with EBV variants and country income level
had an improved testing c-index of 0.73 (p = .04). Finally, a model
trained on the complete feature set of EBV variants, driver genes,
and country income level had the best testing c-index at 0.76
(p < .01), which was significantly higher than all previous models,
indicating that interactions between EBV variants, driver genes,
and clinical features were required for the best survival predictive
performance.

When limited to African patients only, the EBV/clinical features
model had a testing c-index of 0.67. The complete model on the Afri-
can cohort observed a performance boost to 0.71 for the testing

c-index.

Allele frequency/N (%)

103 (79.23)

JOURNAL of CANCER

aHR (95% Cl) p-Value

37.166 (3.548-373.040) .002

3.9 | Three prognostic subgroups were defined
with differential survival

Using the complete feature set of EBV variants, driver genes, and clin-
ical features, the silhouette score indicated that three prognostic sub-
groups yielded the highest cluster stability. These subgroups were
defined by different meta-features, which were composed of various
driver genes and EBV variants (Figure Sé). Subgroup 1 was defined by
a meta-feature composed of driver genes TP53, CNTNAP3B,
MAP3K9, P2RY8, and IGK and the EBV variants G331Q (LMP1) and
H101Q (LMP1) (Figure 1). Subgroup 2 was defined by a meta-feature
consisting of the driver gene ID3 and a different LMP1 variant 1152L
(LMP1) and EBV variant T710N (BSLF1). Finally, Subgroup 3 was
defined by a different meta-feature that included the driver genes
ETS1 and HIST1H2BK as well as a different LMP1 variant G212A and
EBV variants Val564_Ala568del/V564_A568del (EBNA-2), P308Q
(BVRF2), M12L (BDLF3), and T208A (BTRF1). In a Kaplan-Meier sur-
vival analysis, Subgroup 1 observed the highest overall survival, fol-
lowed by Subgroup 2, and then finally Subgroup 3 (p = .03, Figure 2).

These prognostic subgroups included geographical differences
(p <.01). For example, Subgroup 1 was predominantly composed of
North American and European patients (78.26%, n = 18), whereas
Subgroups 2 and 3 had higher proportions of African and South Amer-
ican patients (Subgroup 2: 97.22%, n = 70 and Subgroup 3: 80.00%,
n = 28). Notably, geography was not absolute among these sub-
groups, meaning that there were some African and South American
patients in Subgroup 1 (21.74%, n=5) and North American and
European patients (Subgroup 2: 2.78%, n=2 and Subgroup 3:
20.00%, n = 7) in Subgroups 2 and 3 (Table S5).

4 | DISCUSSION

BL is an aggressive B-cell lymphoma that is fatal if left untreated.
While the prognosis of BL is known to depend on factors such as the
stage of the disease, other molecular and genetic interactions, includ-
ing viral variation, have not been comprehensively explored. In this
study, we incorporated EBV variation along with clinical features and
driver gene mutations into survival models for patients with EBV-posi-
tive tumors. EBV variants, particularly those in LMP1, were found to
be associated with survival. Not surprisingly, we found that study par-
ticipants' country income level (a likely surrogate for clinical access
and care) was the strongest individual feature associated with BL
patient survival time. An analysis limited to patients in Africa shared

many of the same variants as that of the complete cohort and still
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Feature set

Complete (EBV + tumor +
clinical features)

EBV + clinical features
EBV + tumor

EBV

Tumor + clinical features
Tumor

Clinical features

| couice

KIM JR. ET AL.

Training set C-index

0.8504 + 0.0003

0.8356 + 0.0003
0.7968 + 0.0004
0.8184 + 0.0005
0.8144 + 0.0005
0.7881 + 0.0005
0.6085 + 0.0005

Abbreviation: EBV, Epstein-Barr virus.

aT-test comparing the testing set C-index of the current feature set relative to that of the next-best

performing feature set.

Metafeature Components

Met12Leu (BDLF3)
Thr208Ala (BTRF1)
Country Income Level
ID3

lle152Leu (LMPTY)
CNTNAP3B
MAP3K9

TP53

P2RY8

Gly331Glu (LMP1)
HIST1H2BK
Pro308GiIn (BVRF2)
Gly212Ala (LMP1)

Val564_Ala568del (EBNA2)

His101GIn (LMP?)

ETS1

Thr710Asn (BSLF1)

IGK

Subgroup 1

Subgroup 3

Subgroup 2

found a disproportionately higher number of significant variants in
LMP1, but not EBV type, to be associated with patient survival time,
indicating that the addition of patients outside of Africa did not drasti-
cally alter our models. We also defined potential interactions between
specific EBV variants and driver genes in the context of patient sur-
vival time and determined three new prognostic subgroups that
showed differing survival.

The EBV variants associated with patient survival were especially
enriched for LMP1 variants. LMP1 is the main transforming oncopro-

tein in EBV and has a range of biological roles, including inhibiting

Testing set C-Index VR TABLE 3  Survival prediction model
performances.

0.7572 + 0.0038 <.0001

0.7324 + 0.0040 .0358

0.7226 + 0.0038 3912

0.7210 £ 0.0041 <.0001

0.6101 + 0.0047 <.0001

0.5739 + 0.0046 .1098

0.5601 £ 0.0124 N/A
FIGURE 1 Epstein-Barr virus (EBV)

variants/driver genes/country income

M?‘afea‘“’e level contributions to metafeatures. Each
08 lg metafeature was defined by different

dominant genes. Metafeature 1 consisted

0.6 of CNTNAP3B, MAP3K9, TP53, P2RY8,
IGK, G331Q (LMP1), and H101Q (LMP1).
Metafeature 2 was defined by ETS1,

0.2 HIST1H2BK, G212A (LMP1),
V564_A568del (EBNA2), P308Q (BVRF2),
M12L (BDLF3), and T208A (BTRF1).
Finally, Metafeature 3 was composed of
ID3, 1152L (LMP1), and T710N (BSLF1).
Note that all three metafeatures included
a different LMP1 variant. LMP1, latent
membrane protein 1. [Color figure can be
viewed at wileyonlinelibrary.com]

0.4

apoptosis and promoting cell proliferation through activation of the
NF-kB pathway.3¢ Amino acid 212 in LMP1 was especially intriguing,
as G212S had a hazard ratio greater than 1, whereas G212A had a
hazard ratio less than 1. A previous study demonstrated that the
G212S mutation in EBV-positive post-transplant lymphoproliferative
(PTLD) B-cell

extracellular  signal-regulated

disorder lines was associated with increased

kinase/mitogen-activated  protein
kinases activation and c-Fos expression, indicating this variant may be
a gain-of-function mutation.®” Furthermore, a clinical trial of 872 pedi-

atric transplant recipients by Martinez et al.>® reported that G212S
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FIGURE 2 Overall survival of Strata Subgroup 1 =+ Subgroup 2 =+ Subgroup 3
prognostic subgroups. The prognostic
subgroups observed differential survival
with patients from Subgroup 1.00
1 experiencing the best survival, followed
by those in Subgroup 2, and finally the
patients in Subgroup 3. [Color figure can
be viewed at wileyonlinelibrary.com]
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FIGURE 3 Model of LMP1 pathways
and variants. Four of the seven significant
LMP1 variants (lle633Met, His101GlIn,
Met129lle, and lle152Leu) corresponded
to the transmembrane domain, whereas
the other three (Gly212Ala, Gly212Ser,
and Gly331Glu) belonged to the domain

Long Cytoplasmic C-

L

terminal tail:

of the long cytoplasmic C-terminal tail, Gly212Ala CTART) &
which is involved in the NFkB and PI3K/ Giys31cis S

mTOR pathways. Adapted from sources
55-57. LMP1, latent membrane protein 1.
[Color figure can be viewed at
wileyonlinelibrary.com]

IFN/STATs

increased the risk of EBV-positive PTLD by nearly 12-fold. Further-
more, Martinez et al.*® found that 0% of EBV-positive PTLD patients
had G212A, but 96.9% carried G212S, suggesting that this non-
synonymous substitution may significantly dampen the aggressive-
ness of the resulting tumor. Despite the traditional dogma that BL is
classically latency |, our findings support those of more recent studies
highlighting the expression and potential significance of LMP1 in BL'®
and highlight the potential for using specific EBV variants such as
G212S and G212A as predictive biomarkers in EBV-positive BL
(Figure 3).

/J

CTAR2 ::!; CTAR3
o

Time (Years)

Transmembrane Domain:
lle63Met
His101GIn
Met1291le
lle152Leu

\V/

v

—

N-Terminal

PI3K

NFkB mTOR

Overall, the pattern of LMP1 variation was consistent with our
previous findings and those of previous studies where low-middle-
income countries including Kenya, Uganda, and Brazil best fit with the
Alaskan and Mediterranean classifications, and high-income countries
such as Canada, the United States, and France fit with the North Car-
olina strain.2~** The majority of our samples originated from Uganda
and Kenya, which observed no differences in the distribution of the
seven significant LMP1 variants. Three of these seven variants were
also found in the classification proposed by Mainou et al.>? Specifi-
cally, G212S was located in the Alaskan, China 1, and China 2 strains,
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163M was found in the Alaskan strain, and G331Q was detected in
the North Carolina and China 2 strains. G331Q was the only variant
preferentially distributed in high-income countries and was not signifi-
cantly associated with survival in the EBV and complete feature analy-
sis on the African-only cohort, suggesting a potential for geographical
confounding with this variant. Collectively, these patterns of variation
are consistent with our previous finding in Kenya that African LMP1
sequences are likely best classified as Alaskan and Mediterranean.*®

When we restricted our variable selection models to patients in
Africa, we identified six of the same 22 EBV variants from the original
cohort and still found a lack of association between EBV type and sur-
vival time, indicating that the incorporation of patients outside of
Africa did not completely change our model and supporting the grow-
ing number of studies that propose traditional epidemiologic subtypes
corresponding to patient geography may not be the best classification
of BL.>” While a few LMP1 variants were disproportionately enriched
in certain geographic regions across the publicly available sequences,
that LMP1 variants were still outputted from the variable selection
model on the Africa-only cohort and country income level was
accounted for in the model on the overall cohort collectively indicate
that these variants may be biologically and clinically significant irre-
spective of geography. Importantly, we continued to find a high num-
ber of variants associated with patient survival time in the LMP1 gene
including G212A and 1152L and a lack of association between EBV
type and patient survival time, despite previous studies showing
molecular differences between Types 1 and 2 in the context of
tumorigenesis.®404°

Of all features, country income level was the most significant con-
tributor to patient survival time, with patients in low-middle-income
countries experiencing the highest hazard ratios in all relevant feature
sets. In this study, patients from low-middle-income countries,
namely countries on the continents of Africa and South America, had
a median survival time of 1.89 years compared to those from high-
income countries, which observed a greater than 50% survival rate.
This finding supports those of many previous studies, as BL patients
in equatorial Africa have a survival rate nearly half of that of BL in
non-tropical countries.® Country income level is essentially a proxy for
access to healthcare, and since BL is a highly aggressive tumor that
requires intensive and consistent treatment, limited access to care,
such as delays in diagnosis and insufficient clinical supportive
care, can have potentially devastating consequences.*® Altogether,
our findings suggest that while genetic features of the human tumor
cells and virus potentially underlying patient geography play a signifi-
cant role in patient survival time, socioeconomic factors are by far the
most important contributor.

Besides EBV variation, our variable selection and survival predic-
tion models highlighted eight driver genes, two of which were individ-
ually associated with patient survival time as supported by previous
studies.*1®*” CNTNAP3B, which was associated with decreased
patient survival time, plays an integral role in cell adhesion, and abnor-
malities in the gene have been implicated in other cancers such as
B-cell acute lymphoblastic leukemia.*” Furthermore, due to its associ-

ation with immune checkpoint expression, CNTNAP3B has been used

in a prognostic model for bladder cancer.*® ID3 was associated with
increased patient survival time, and Thomas et al.* similarly reported
that patients with ID3 mutations observed increased survival com-
pared to those who did not when controlling for TP53 mutations.
Panea et al.® found that ID3 was one of the most commonly silenced
genes, and in vivo knockout of ID3 amplified the tumorigenic effects
of MYC. Thus, while ID3 mutations may play a key role in the initial
tumorigenesis, they could lead to less aggressive disease once the
tumor has been established. Our results do differ from those of some
previous studies. For instance, previous studies found that BL patients
with TP53 mutations were more likely to relapse or experienced
worse survival.** While our multivariable Cox proportional hazards
analysis did not find TP53 mutations to have a statistically significant
association with patient survival time, our cohort consisted of EBV-
positive BL patients, most of whom originated from Africa and South
America, while most previous studies studied both EBV-negative and
EBV-positive patients mostly in North America or Europe. Thus, given
that EBV infection alters the driver genes in BL tumorigenesis, TP53
may not be significantly associated with clinical outcomes in EBV-
positive BL patients. Regardless, interactions between all three fea-
ture sets including driver genes, various specific EBV variants, and
country income level were required for the best possible survival pre-
dictive performance.

Having defined interactions between specific EBV variants
and driver genes, we found clinically relevant prognostic sub-
groups that demonstrated differences in survival and included a
different LMP1 variant and various driver genes in each subgroup.
Subgroup 1 consisted of the LMP1 variants Gly331Glu and
His101GIn along with the driver genes TP53 and MAP3K9. Wang
and colleagues determined that the TP53-encoded p53 protein
activates LMP1, which in turn blocks many effects of p53 during
viral transformation and enables EBV-infected cells to endure cel-
lular damages.>® Subgroup 2 included the LMP1 variant 1152L and
driver gene ID3. ID3 is a well-characterized tumor suppressor gene
in BL that amplifies the effects of MYC, thereby causing tumori-
genesis.® Recent studies have reported increased methylation and
silencing of ID3 in EBV-infected B cells via an LMP1-involved
mechanism.>? Lastly, Subgroup 3 was composed of the LMP1 vari-
ant G212A, EBNA2 variant V564_A568del, and the driver gene
ETS1. Kim et al.>2 reported that LMP1 induced the expression of
ETS1, thereby increasing the invasiveness of the tumor in naso-
pharyngeal carcinoma. Zhang et al.”® found that LMP1 and EBNA2,
which are critically involved in latent viral transcription, comprise
the minimum set of EBV genes required for tumorigenesis. On a
larger cohort of both EBV-negative and EBV-positive BL samples,
Thomas et al. also defined three subgroups using tumor mutations
only. Given that most of our samples came from Thomas et al.,*®
their subgroups shared significant similarities yet had some key
differences. For example, two of their three subgroups were
defined by the same key driver genes: ID3 and TP53. However,
unlike our subgroups, their subgroups did not incorporate viral var-
iation and did not observe statistically significant differences in

survival. With recent studies indicating that EBV status may be
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more defining than epidemiologic subtype,® our findings suggest
the presence of subgroups within EBV-positive BL with each hav-
ing a different prognosis. Altogether, our findings portend the sig-
nificance of the virus and its variants in impacting patient survival
time and prognostic subgrouping.

Overall, our study identified specific EBV variants significantly
associated with BL patient survival time. The main limitation of this
study was its small sample size, as only 130 of the 331 publicly avail-
able BL samples were EBV-positive, of which 103 were African or
South American. However, our variable selection models were
designed to address this limitation by decreasing the number of possi-
ble features associated with patient survival. As a result, we found a
high number of significant variants in the LMP1 gene and a lack of
association with EBV type, findings which were confirmed in a sub-
analysis of only patients from Africa. We also determined that country
income level, which corresponds to access to healthcare, was the
most important factor in patient survival time. We also described
potential interactions between driver genes and specific EBV variants
in BL in the context of patient survival time and proposed a model
that accurately predicts survival based on clinical features, driver
genes, and EBV variants as well as defined prognostic subgroups.
Although previous studies have investigated the relationship between
patient survival time and clinical features as well as driver genes,>>*
none have examined the role of EBV variation and its interactions
with the aforementioned factors.

5 | CONCLUSIONS

Our study offers key insight into the role of specific EBV variants in
BL patient survival time and their interactions with driver genes and
clinical features, potentially introducing specific EBV variants as pre-
dictive biomarker candidates in future studies. We also define a sur-
vival prediction model and prognostic subgroups that may be used to
assess prognosis for EBV-positive BL patients. Validation of these
findings on larger patient cohorts as they become available is

warranted.
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